BACKGROUNDGene expression profiling should be applicable to needle biopsy samples if microarray technology is to become practically useful for clinical research or management of breast carcinoma. This study compared gene expression profiles derived from fine‐needle aspiration biopsy (FNAB) and from core needle biopsy (CBX).METHODSTotal RNA was extracted from single FNAB and CBX samples. Corresponding pairs of FNAB and CBX were analyzed for similarity of gene expression profiles using cDNA microarrays that contain 30,721 human sequences. A subset of genes that distinguished CBX samples from FNAB samples was evaluated in a larger group of needle biopsy samples and in a published genomic database derived from 78 sporadic breast carcinomas with known clinical outcome.RESULTSSixty‐eight patients with newly diagnosed breast carcinoma were included in the current study. Sixty‐five patients underwent FNAB (17 had both FNAB and CBX) and 3 underwent CBX only. Extracted RNA was of suitable quality for hybridization in 46 (71%) FNABs and 15 (75%) CBXs. Total RNA yield in those samples was similar for single‐pass FNAB (mean = 3.6 μg and median = 2.2 μg; n = 46) and CBX (mean = 2.8 μg and median = 2.0 μg; n = 15), with 1 μg or more of total RNA in all cases. Transcriptional profiling was performed successfully in all cases when it was attempted, in a total of 50 samples (38 FNABs and 12 CBXs), including matched FNAB and CBX samples from 10 patients. There were differences in gene expression profiles in 10 matched FNAB and CBX sample pairs. Genes that were expressed differently in CBX samples, compared with FNAB samples, were recognized as being predominantly from the endothelium, fibroblasts, myofibroblasts or smooth muscle, and histiocytes. Corresponding microscopic cell counts from FNABs demonstrated means of 80% tumor cells, 15% lymphocytes, and 5% stromal cells, whereas CBXs contained 50% tumor cells, 20% lymphocytes, and 30% stromal cells. Considering that CBXs are approximately six‐fold richer in nonlymphoid stromal cells than FNABs and that CBXs differentially express a set of recognized stromal genes, the authors used these biopsies to define a transcriptional profile of breast carcinoma stroma. A set of 120 genes differentially expressed in CBXs was assessed independently in a published breast carcinoma genomic database to classify breast carcinomas based on stromal gene expression. Subgroups of tumors with low or high stromal signal were identified, but there was no correlation with the development of systemic metastases within 5 years.CONCLUSIONSBoth FNAB and CBX yield a similar quality and quantity of total RNA and are suitable for cDNA microarray analyses in approximately 70–75% of single‐pass samples. Transcriptional profiles from FNAB and CBX of the same tumor generally are similar and are driven by the tumor cell population. The authors concluded that each technique has relative advantages. The FNABs provide transcriptional profiles that are a purer representation of the tumor cell population, whereas transcriptional profiles from CBXs include more repre sentation from nonlymphoid stromal elements. Selection of the preferred needle biopsy sampling technique for genomic studies of breast carcinomas should depend on whether variable stromal gene expression is desirable in the samples. Cancer 2003;97:2960–71. © 2003 American Cancer Society.DOI 10.1002/cncr.11435
Background Colorectal cancer (CRC) is one of the leading types of cancer worldwide and in Saudi Arabia. At the molecular level, CRC is very complicated and requires establishing comprehensive patient stratification models through identification of patients who will benefit or will not benefit from targeted therapy. We retrospectively investigated and analyzed the frequency of Kirsten-ras (K-ras) mutation and its correlation with patients’ characteristics as weel as its association with clinicopathological features (i.e age, gender, clinical stage, anatomical site, histological subtype, degree of histological differentiation and metastatic site) in patients with CRC. Methods Medical records and paraffin-embedded tumor samples from 51 patients with histologically proven colorectal adenocarcinoma referred to Madinah center in Saudi Arabia were analyzed for the occurrence of rat sarcoma virus (RAS) mutations. Results RAS mutations occurred in 43% of the patients; 91% of these mutations were in K-ras. Seventy-five percent of these K-ras mutations were in codon 12, most commonly p.G12D. Codon 13 mutations occurred in 20% of tumors: all of these were p.G13D (100%). The percentage of K-ras mutations occurrence was higher in young patients (≤50) compared with the older patients (>50) (54.5% and 35%, respectively). Similarly, the percentage of K-ras mutations occurrence was higher in the right-sided tumors compared with the left-sided tumors (57.1% and 32.4%, respectively). Patients’ characteristics and clinicopathological features were not significantly associated with K-ras mutations. Conclusions K-ras mutations are common among Saudi patients diagnosed with CRC in Madinah, especially pG12V and pG12D in codon 12. Further investigation would be required to establish correlation of K-ras mutations in larger cohorts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.