Abstract. Mineral oil is known to have a low biodegradability level and high susceptibility to the fire. These conditions motivate many researchers to look for alternative sources for insulating oil. One of the alternative liquid is palm oil. To verify the suitability of using palm oil as an insulating liquid, it is important to make dielectric properties comparison with the commonly used insulating liquid. This paper presents comparison of temperature effect on dielectric properties of palm oil with mineral type insulating liquid and silicone oil. The measured parameters were breakdown voltage, dissipation factor (tan δ), and dielectric constant. Breakdown voltage measurement was performed in accordance with IEC 156 standard, whereas, the dissipation factor and dielectric constant measurement were conducted based on IEC 60247 standard test methods. The results showed that variations of dielectric properties of palm oil to the temperature change, in general, have the same tendency with those of commonly used insulating liquids i.e. mineral oil and silicone oil. Breakdown voltages and dissipation factors of all tested oils were increased, while their dielectric constants were slightly decreased with the increase of temperature.
An attempt to develop a monoester type insulating oil, especially methyl ester is being conducted and the current results after conducting two kinds of treatment, namely, filtration and water reduction are reported in this paper. Five different samples were prepared from methyl ester oil based on their melting point. The important properties of oil samples such as breakdown voltage, viscosity, water content, acidity, and density were tested, and are evaluated based on the standard specification of natural ester used for the transformer, ASTM D-6871. Another important property, i.e. oxidation stability was also tested and is evaluated by comparing the corresponding result of mineral oil. It is found that the breakdown voltage, the viscosity and the relative density of the oil fulfill the requirements specified by the standard, whereas other properties like water content, acidity and oxidation stability need further improvement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.