Fuzzy goal programming (FGP) is applied to solve fuzzy multi-objective optimization problems. In FGP, the weights are associated with fuzzy goals for the preference among them. However, the hierarchy within the fuzzy goals depends on several uncertain criteria, decided by experts, so the preference relations are not always easy to associate with weight. Therefore, the preference relations are provided by the decision-makers in terms of linguistic relationships, i.e., goal A is slightly or moderately or significantly more important than goal B. Due to the vagueness and ambiguity associated with the linguistic preference relations, intuitionistic fuzzy sets (IFSs) are most efficient and suitable to handle them. Thus, in this paper, a new fuzzy goal programming with intuitionistic fuzzy preference relations (FGP-IFPR) approach is proposed. In the proposed FGP-IFPR model, an achievement function has been developed via the convex combination of the sum of individual grades of fuzzy objectives and amount of the score function of IFPRs among the fuzzy goals. As an extension, we presented the linear and non-linear, namely, exponential and hyperbolic functions for the intuitionistic fuzzy preference relations (IFPRs). A study has been made to compare and analyze the three FGP-IFPR models with intuitionistic fuzzy linear, exponential, and hyperbolic membership and non-membership functions. For solving all three FGP-IFPR models, the solution approach is developed that established the corresponding crisp formulations, and the optimal solution are obtained. The validations of the proposed FGP-IFPR models have been presented with an experimental investigation of a numerical problem and a banking financial statement problem. A newly developed distance measure is applied to compare the efficiency of proposed models. The minimum value of the distance function represents a better and efficient model. Finally, it has been found that for the first illustrative problem considered, the exponential FGP-IFPR model performs best, whereas for the second problem, the hyperbolic FGP-IFPR model performs best and the linear FGP-IFPR model shows worst in both cases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.