Interest in self-healing-crack technologies for cement-based materials has been growing, but research into such materials remains in the early stage of development and standardized methods for evaluating healing capacity have not yet been established. Therefore, this study proposes a test method to evaluate the self-healing capacity of cement-based materials in terms of their resistance to chloride penetration. For this purpose, the steady-state chloride migration test has been used to measure the diffusion coefficients of cracked mortar specimens containing crystalline, expansive, and swelling admixtures. The results of the present study show that the time to reach a quasi-steady-state decreased and the diffusion coefficients increased as the potential increased because of the potential drop inside the migration cell and self-healing that occurred during the test. Therefore, use of a high potential is recommended to minimize the test duration, as long as the temperature does not rise too much during the test. Using this test method, the self-healing capacity of the new self-healing technologies can be evaluated, and an index of self-healing capacity is proposed based on the rate of charged chloride ions passing through a crack.
In today’s world, the implementation of industrial ecology for sustainable industrial development is a common practice in the field of engineering. This practice promotes the recycling of by-product wastes. One of those by-product wastes is rice husk ash. This paper describes an investigation into the effect of rice husk ash (RHA) as a partial replacement for cement, to produce lightweight, aerated concrete. Type I Portland cement, fine aggregate, and aluminum powder as an aerating agent were used in this study. The RHA was used in different replacement levels, i.e., RHA was used to replace cement at 0%, 2.5%, 5%, 7.5%, 10%, 12.5% and 15% by weight. Aluminum powder was added during mixing at 0.5% by weight of binder to obtain lightweight, aerated concrete. Test results are presented in terms of physical, mechanical, and durability aspects that include density, compressive strength, split tensile strength, and flexural strength of concrete cured at different curing regimes, i.e., 3, 7, 28, and 90 days along with corrosion analysis, and sulphate attack at 28 days of curing. The test results show that using 10% RHA as a partial replacement of cement in aerated concrete is beneficial in triggering the strength and durability properties of concrete.
This research is sought to characterize the stimulated autogenous healing of fiber-reinforced mortars that incorporate healing agents such as crystalline admixtures, expansive agents, and geomaterials. The effects of the healing materials on mechanical performance and water permeability were evaluated experimentally. Furthermore, microscopic and microstructural observations were conducted to investigate the characteristics and physical appearance of healing products within healed cracks. Test results are presented herein regarding index of strength recovery (ISR), index of damage recovery (IDR) and index of dissipation energy gain (IDEG) in relation to crack healing, and reduction of water flow rate. The self-healing capability of the mortars was greater in terms of resisting water flow rather than recovering mechanical performance likely because water flow depends on surface crack sealing, whereas mechanical performance depends on bonding capacity as well as full-depth healing of cracks; thus, mechanical performance may further be improved after longer healing duration.
Cement production produces a high amount of carbon dioxide, which has a negative impact on the environment. By utilizing waste products instead of cement, environmental degradation can be reduced. The current study was undertaken to study the mechanical and durability performance of concrete by replacing 7.5%, 10%, and 12.5% silica fume (SF) of cement weight. Additionally, coal bottom ash (CBA) was also substituted as fine aggregates with 10%, 20%, and 30%. Compressive strength and indirect tensile strength were the major parameters regarding mechanical properties, while corrosion analysis and sulfate attack were set for durability performance. Sixteen mixes were prepared including a control mix. Out of these, three mixes contained SF, three mixes contained CBA, and eight mixes contained both SF and CBA with 1:2:4 ratio at 0.5 w/b ratio. The results concluded that the addition of 12.5% SF and 30% CBA gives optimum compressive strength and tensile strength. Furthermore, using the SF and CBA reduces the workability of concrete. Furthermore, the use of these byproducts increased the durability in terms of corrosion and sulfate attack.
Coprecipitation-adsorption plays a significant role during coagulation-flocculation-sedimentation (C/F/S) of antimony (Sb) in water. This work uses a Box–Behnken statistical experiment design (BBD) and response surface methodology (RSM) to investigate the effects of major operating variables such as initial Sb(III, V) concentration (100–1000 µg/L), ferric chloride (FC) dose (5–50 mg/L), and pH (4–10) on redox Sb species. Experimental data of Sb(III, V) removal were used to determine response function coefficients. The model response value (Sb removal) showed good agreement with the experimental results. FC showed promising coagulation behavior of both Sb species under optimum pH (6.5–7.5) due to its high affinity towards Sb species and low residual Fe concentration. However, a high dose of 50 mg/L of FC is required for the maximum (88–93%) removal of Sb(V), but also for the highest (92–98%) removal of low initial concentrations of Sb(III). Furthermore, BBD and RSM were found to be reliable and feasible for determining the optimum conditions for Sb removal from environmental water samples by a C/F/S process. This work may contribute to a better understanding and prediction of the C/F/S behavior of Sb(III, V) species in aqueous environments, to reduce potential risks to humans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.