In today’s world, the implementation of industrial ecology for sustainable industrial development is a common practice in the field of engineering. This practice promotes the recycling of by-product wastes. One of those by-product wastes is rice husk ash. This paper describes an investigation into the effect of rice husk ash (RHA) as a partial replacement for cement, to produce lightweight, aerated concrete. Type I Portland cement, fine aggregate, and aluminum powder as an aerating agent were used in this study. The RHA was used in different replacement levels, i.e., RHA was used to replace cement at 0%, 2.5%, 5%, 7.5%, 10%, 12.5% and 15% by weight. Aluminum powder was added during mixing at 0.5% by weight of binder to obtain lightweight, aerated concrete. Test results are presented in terms of physical, mechanical, and durability aspects that include density, compressive strength, split tensile strength, and flexural strength of concrete cured at different curing regimes, i.e., 3, 7, 28, and 90 days along with corrosion analysis, and sulphate attack at 28 days of curing. The test results show that using 10% RHA as a partial replacement of cement in aerated concrete is beneficial in triggering the strength and durability properties of concrete.
Concrete durability is a key aspect for forecasting the expected life time of concrete structures. In this paper, the effect of compressive strength and durability of concrete containing metakaolin developed from a local natural material (Soorh of Thatta Distict of Sindh, Pakistan) is investigated. Soorh is calcined by an electric furnace at 8000C for 2 hours to produce metakaolin. One mix of ordinary concrete and five mixes of metakaolin concrete were prepared, where cement is replaced by developed metakaolin from 5% to 25% by weight, with 5% increment step. The concrete durability was tested for water penetration, carbonation depth and corrosion resistance. The obtained outcomes demonstrated that, 15% replacement level of local developed metakaolin presents considerable improvements in concrete properties. Moreover, a considerable linear relationship was established between compressive strength and concrete durability indicators like water penetration, carbonation depth and corrosion resistance.
Drinking water quantity and quality is of the utmost importance. If the drinking water gets contaminated, it can result in severe health problems. For example, the continuous consumption of drinking water containing more than permissible amounts of fluoride can lead to bone deterioration and increased risk of bone fracture [1]. The present study was carried out to check the quality of underground water of Sukkur city. The analyzed parameters were fluoride, sodium, magnesium, calcium, potassium, iron, arsenic, TDS, pH, conductivity, odor, color and taste. World Health Organization (WHO) standards were followed in present study. Underground water samples were collected from 20 different populated locations of Sukkur city. Only arsenic, pH, iron and potassium were found to be within health safe limits while the rest of the parameters exceeded the permissible standards set out by WHO. The TDS, sodium, fluoride and magnesium were over the limits at some locations.
Development of underground transportation systems consists of tunnels, basement construction excavations and cut and cover tunnels which may encounter existing pile groups during their construction. Since many previous studies mainly focus on the effects of excavations on single piles, settlement and load transfer mechanism of a pile group subjected to excavation-induced stress release are not well investigated and understood. To address these two issues, three-dimensional coupled-consolidation numerical analysis is conducted by using a hypoplastic model which takes small-strain stiffness into account. A non-linear pile group settlement was induced. This may be attributed to reduction of shaft resistance due to excavation induced stress release, the pile had to settle substantially to further mobilise end-bearing. Compared to the Sp of the pile group, induced settlement of the single pile is larger with similar settlement characteristics. Due to the additional settlement of the pile group, factor of safety for the pile group can be regarded as decreasing from 3.0 to 1.4, based on a displacement-based failure load criterion. Owing to non-uniform stress release, pile group tilted towards the excavation with value of 0.14%. Due to excavation-induced stress release and dragload, head load of rear piles was reduced and transferred to rear piles. This load transfer can increase the axial force in front piles by 94%.
Temperature and precipitation variations have a huge environmental, social and economic impact. This study aims to analyze the temporal variation of temperature and precipitation in Shaheed Benazir Abad district by using the linear regression method, the trend magnitude, the Mann-Kendall test and the Sen’s estimator of slope. The annual precipitation and monthly temperature data of Shaheed Benazir Abad for the period of 1996-2014 are considered. The result shows that the Diurnal temperature range of all months is decreasing due to the increasing of monthly minimum temperature at a faster rate than the monthly maximum temperature. However, the Diurnal temperature range of extreme events is increasing. The results obtained by using Mann-Kendall test revealed that rainfall exhibits significant positive trend. The trends of rainfall and rainy days show that the amount of rainfall is increasing much more rapidly than that of rainy days which indicates the occurrence of heavy events.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.