Engineering representing the backbone of a nation aims to migrate towards the knowledge economy. The strengthening of engineering education leads to the nation’s self-reliance while building indigenous capabilities. The current study attempts to compare engineering education in China with Pakistan, Europe, and the USA in context of One Belt, One Road (OBOR) initiative. The comparison provided by this study will help to identify some of the trends and challenges in engineering education at the national and regional level of OBOR countries. The study suggests that OBOR strategy will allow China to build excellence in engineering education and export its expertiseamong the member countries during developing stage.
The presence of inorganic and organic substances may alter the physicochemical properties of iron (Fe) salt precipitates, thereby stabilizing the antimony (Sb) oxyanions in potable water during the chemical treatment process. Therefore, the present study aimed to examine the surface characteristics, size of Fe flocs and coagulation performance of Sb oxyanions under different aqueous matrices. The results showed that surface properties of Fe flocs significantly varies with pH in both Sb(III, V) suspensions, thereby increasing the mobility of Sb(V) ions in alkaline conditions. The negligible change in surface characteristics of Fe flocs was observed in pure water and Sb(III, V) suspension at pH 7. The key role of Van der Waals forces of attraction as well as hydration force in the aggregation of early formed flocs were found, with greater agglomeration capability at higher more ferric chloride dosage. The higher Sb(V) loading decreased the size of Fe flocs and reversed the surface charge of precipitates, resulting in a significant reduction in Sb(V) removal efficiency. The competitive inhibition effect on Sb(III, V) removal was noticed in the presence of phosphate anions, owing to lowering of ζ-potential values towards more negative trajectory. The presence of hydrophobic organic matter (humic acid) significantly altered the surface characteristics of Fe flocs, thereby affecting the coagulation behavior of Sb in water as compared to the hydrophilic (salicylic acid). Overall, the findings of this research may provide a new insight into the variation in physicochemical characteristics of Fe flocs and Sb removal behavior in the presence of inorganic and organic compounds during the drinking water treatment process.
The effect of irradiance and increase of temperature on the back surface of the PV module would decrease the standardized efficiency of PV. To overcome this problem observed results of solar module (ORSM) and Newton Raphson’s (iterative) methods have been proposed in this research. This article compares ORSM and iterative methods of changing the specifications of a single diode model (SDM) extracted from a PV module beneath standard test conditions (STC) to calculate irradiance and various operating conditions. To make this comparison, the exact value of each diode parameter on the STC is essential. These are achieved by accepted algebraic values and iterative techniques. Newton Raphson’s technique has been proven to be the mainly precise method to find these specifications in STC. Therefore, these specifications are used to different techniques that change the parameters of an SDM with radiation and temperature. The MATLAB model is designed to assess the conducting of individual techniques by PVM. The results are compared with the measured data, and the accuracy of photovoltaic module efficiency has been achieved through different technologies at different temperature and insolation levels.
Using unsupported catalysts also improved stability during electrochemical reactions and high durability due to their non-corrosive component, Carbon. Advanced mesoporous architectures were created in which the pore and metal composition are controlled at the nanoscale level. Rigid template-assisted synthesis, which makes periodic porosity in the solid, are used to create mesoporous platinum and platinum bimetallic catalyst. The ability to control the composition, shape, and porous architecture of Pt and Pt bimetallic combinations, eliminating the carbon corrosion problem, improved the activity of the catalyst. Hence, 3D bicontinuous mesoporous silica KIT-6 and 2D mesoporous silica SBA-15 were synthesized. Ordered mesoporous silica prepared has uniform mesopores (7.9 and 7.3nm for KIT-6 and SBA-15, respectively) and high specific surface areas 772 m2.g-1 (for KIT-6) and 943 m2.g-1 (for SBA-15). These rigid silica templates were employed to produce mesoporous metal particles for fuel cell electrocatalyst.
The agro-industrial sector of many countries generates considerable quantity of waste biomass and potential exploitation of this reside is necessary for economic and environmental reasons. Pakistan is an agricultural based country with widespread amount of crop residue generated annually. This study utilized rice husk, sawdust and bagasse residues to investigate the effects of microwave absorber loading on process temperature, pyrolysis products, and bio-oil composition using multimode microwave pyrolysis system operated at 300W and 2.54GHz. The results indicated that pyrolysis process temperature depends on the type of waste residue and microwave absorber loading. The maximum bio-oil yield of 22.41wt%, 33.61wt% and 19.1wt% were produced at 75wt% microwave absorber loading from rice husk, sawdust and bagasse, respectively. The D-Allose of 21.95 %area, dodecanoic acid of 71.22 %area and octasiloxane of 74.50 %area under GC-MS in rice husk, sawdust and bagasse bio-oils, respectively suggests potential use as chemical feedstock. Keywords: Waste biomass; microwave absorber; microwave assisted pyrolysis; process temperature; product distribution; bio-oil composition
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.