Agricultural residues, such as lignocellulosic materials (LM), are the most attractive renewable bioenergy sources and are abundantly found in nature. Anaerobic digestion has been extensively studied for the effective utilization of LM for biogas production. Experimental investigation of physiochemical changes that occur during pretreatment is needed for developing mechanistic and effective models that can be employed for the rational design of pretreatment processes. Various-cutting edge pretreatment technologies (physical, chemical and biological) are being tested on the pilot scale. These different pretreatment methods are widely described in this paper, among them, microaerobic pretreatment (MP) has gained attention as a potential pretreatment method for the degradation of LM, which just requires a limited amount of oxygen (or air) supplied directly during the pretreatment step. MP involves microbial communities under mild conditions (temperature and pressure), uses fewer enzymes and less energy for methane production, and is probably the most promising and environmentally friendly technique in the long run. Moreover, it is technically and economically feasible to use microorganisms instead of expensive chemicals, biological enzymes or mechanical equipment. The information provided in this paper, will endow readers with the background knowledge necessary for finding a promising solution to methane production.
During investigations into an outbreak of egg production decline, retarded growth, and even death among ducks in Southeast China, a novel Tembusu virus strain named Tembusu virus Fengxian 2010 (FX2010) was isolated. This virus replicated in embryonated chicken eggs and caused embryo death. In cross-neutralization tests, antiserum to the partial E protein of Tembusu virus Mm1775 strain neutralized FX2010, whereas antiserum to Japanese encephalitis virus did not. FX2010 is an enveloped RNA virus of approximately 45-50 nm in diameter. Sequence analysis of its E and NS5 genes showed that both genes share up to 99.6% nucleotide sequence identity with Baiyangdian virus, and up to 88% nucleotide sequence identity with their counterparts in Tembusu virus. FX2010 was transmitted without mosquito, and caused systemic infection and lesions in experimentally infected ducks. These results indicate that FX2010 and BYD virus are newly emerged Tembusu virus strains that cause an infectious disease in ducks.
Observation of a new type of nanoscale ferroelectric domains, termed as "bubble domains"-laterally confined spheroids of sub-10 nm size with local dipoles self-aligned in a direction opposite to the macroscopic polarization of a surrounding ferroelectric matrix-is reported. The bubble domains appear in ultrathin epitaxial PbZr Ti O /SrTiO /PbZr Ti O ferroelectric sandwich structures due to the interplay between charge and lattice degrees of freedom. The existence of the bubble domains is revealed by high-resolution piezoresponse force microscopy (PFM), and is corroborated by aberration-corrected atomic-resolution scanning transmission electron microscopy mapping of the polarization displacements. An incommensurate phase and symmetry breaking is found within these domains resulting in local polarization rotation and hence impart a mixed Néel-Bloch-like character to the bubble domain walls. PFM hysteresis loops for the bubble domains reveal that they undergo an irreversible phase transition to cylindrical domains under the electric field, accompanied by a transient rise in the electromechanical response. The observations are in agreement with ab-initio-based calculations, which reveal a very narrow window of electrical and elastic parameters that allow the existence of bubble domains. The findings highlight the richness of polar topologies possible in ultrathin ferroelectric structures and bring forward the prospect of emergent functionalities due to topological transitions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.