Using irradiated doped-silica preforms from which fibres for thermoluminescence dosimetry applications can be fabricated we have carried out a range of luminescence studies, the TL yield of the fibre systems offering many advantages over conventional passive dosimetry types. In this paper we investigate such media, showing emission spectra for irradiated preforms and the TL response of glass beads following irradiation to an Am-Be neutron source located in a tank of water, the glass fibres and beads offering the advantage of being able to be placed directly into liquid. The outcomes from these and other lines of research are intended to inform development of doped silica radiation dosimeters of versatile utility, extending from environmental evaluations through to clinical and industrial applications.
This work addresses purpose-made thermoluminescence dosimeters (TLD) based on doped silica fibres and sol-gel nanoparticles, produced via Modified Chemical Vapour Deposition (MCVD) and wet chemistry techniques respectively. These seek to improve upon the versatility offered by conventional phosphor-based TLD forms such as that of doped LiF. Fabrication and irradiation-dependent factors are seen to produce defects of differing origin, influencing the luminescence of the media. In coming to a close, we illustrate the utility of Ge-doped silica media for ionizing radiation dosimetry, first showing results from gammairradiated Ag-decorated nanoparticles, in the particular instance pointing to an extended dynamic range of dose. For the fibres, at radiotherapy dose levels, we show high spatial resolution (0.1 mm) depth-dose results for proton irradiations. For novel microstructured fibres (photonic crystal fibres, PCFs) we show first results from a study of undisturbed and technologically modified naturally occurring radioactivity environments, measuring doses of some 10 s of μGy over a period of several months.
Despite the availability of effective antifungal therapy, cryptococcal meningoencephalitis (CM) remains associated with elevated mortality. The spectrum of symptoms associated with the central nervous system (CNS) cryptococcosis is directly caused by the high fungal burden in the subarachnoid space and the peri-endothelial space of the CNS vasculature, which results in intracranial hypertension (ICH). Management of intracranial pressure (ICP) through aggressive drainage of cerebrospinal fluid by lumbar puncture is associated with increased survival. Unfortunately, these procedures are invasive and require specialized skills and supplies that are not readily available in resource-limited settings that carry the highest burden of CM. The institution of pharmacologic therapies to reduce the production or increase the resorption of cerebrospinal fluid would likely improve clinical outcomes associated with ICH in patients with CM. Here, we discuss the potential role of multiple pharmacologic drug classes such as diuretics, corticosteroids, and antiepileptic agents used to decrease ICP in various neurological conditions as potential future therapies for CM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.