PurposeEffective leaders have emerged as the cornerstone of project success. The major purpose of this paper is to propose a framework to categorize and prioritize leadership competencies for project managers in megaprojects.Design/methodology/approachIn the first stage, this study utilizes PMBOK 6th Edition, IPMA ICB 4.0 frameworks to develop a hierarchy-based four clusters of leadership competencies. In the second stage, a Fuzzy-AHP (Analytic Hierarchy Process) approach was employed to prioritize the leadership competencies for an organization dealing in megaprojects. Finally, using ordinal priority approach (OPA), the results of Fuzzy-AHP method are validated.FindingsBased on PMBOK, IPMA and literature, the proposed framework deduced twenty-four leadership competencies and grouped them in four clusters. The Fuzzy-AHP results indicate that among clusters, people competencies cluster is ranked most important, followed by perspective, practice, and innovation competencies. Considering the sub-categories and global weights, culture/values, governance, interpersonal skills, and development and growth emerged as the most important leadership competencies. The results from OPA corroborate the findings of Fuzzy-AHP method.Practical implicationsMegaprojects are characterized by massive investments and extensive economic and social impact. The proposed framework would be an important aid for policymakers to develop suitable strategies and programs to inculcate leadership competencies that would lead to successful project managers and improved project performance.Originality/valueThe need for this research stems from the need to integrate popular project management frameworks in leadership competencies development in project based organizations. The proposed integrated framework, based on PMBOK 6th Edition and IPMA ICB 4.0 competency frameworks, is an original contribution to understand and prioritize leadership competencies for megaproject success.
The aim of this article is to present a novel framework that integrates the strategic dimensions of sustainability and the ISO 21500 standard to evaluate and select subcontractors for megaprojects. ISO 21500 processes were utilized to develop benefits, opportunities, costs, and risks subnets, whereas triple-bottom line sustainability dimensions were used as strategic criteria. Subsequently, the Analytic Network Process was used to examine the proposed framework for the Qatar Rail megaproject. The proposed framework supports organizations dealing with megaprojects to align their subcontractor selection with ISO 21500 and achieve ecological and social objectives alongside the project’s stipulated economic benefits.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.