Cadmium is one of the most toxic substances found in aquatic ecosystems. This metal tends to accumulate in photosynthetic plants and fish and is transferred to humans causing many diseases. It has to be removed from our environment to reduce any health risks. Dry biomass of the microalga (cyanobacterium) Spirulina platensis was used as biosorbent for the removal of cadmium ions (Cd(2+)) from aqueous solutions. The effects of different levels of pH (3-9), biomass concentration (0.25-2 g), temperature (18-46 °C), metal concentration (40-200 mg/l) and contact time (30-120 min) were tested. Batch cultures were carried out in triplicate in an orbital shaker at 150 rpm. After centrifuging the biomass, the remaining levels of cadmium ions were measured in the supernatant by Atomic Absorption Spectrometer. Very high levels of removal, reaching up to 87.69% were obtained. The highest percentage of removal was reached at pH 8, 2 g of biosorbent, 26 °C, and 60 mg/l of cadmium concentration after 90 min of contact time. Langmuir and Freundlich isotherm models were applied to describe the adsorption isotherm of the metal ions by S. platensis. Langmuir model was found to be in better correlation with experimental data (R (2) = 0.92). Results of this study indicated that S. platensis is a very good candidate for the removal of heavy metals from aquatic environments. The process is feasible, reliable and eco-friendly.
The hexavalent chromium Cr(VI) poses a threat as a hazardous metal and its removal from aquatic environments through biosorption has gained attention as a viable technology of bioremediation. We evaluated the potential use of three green algae (Cladophora glomerata, Enteromorpha intestinalis and Microspora amoena) dry biomass as a biosorbent to remove Cr(VI) from aqueous solutions. The adsorption capacity of the biomass was determined using batch experiments. The adsorption capacity appeared to depend on the pH. The optimum pH with the acid-treated biomass for Cr(VI) biosorption was found to be 2.0 at a constant temperature, 45 °C. Among the three genera studied, C. glomerata recorded a maximum of 66.6% removal from the batch process using 1.0 g dried algal cells/100 ml aqueous solution containing an initial concentration of 20 mg/L chromium at 45 °C and pH 2.0 for 60 min of contact time. Langmuir and Freundlich isotherm equations fitted to the equilibrium data, Freundlich was the better model. Our study showed that C. glomerata dry biomass is a suitable candidate to remove Cr(VI) from aqueous solutions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.