Ultrasmooth submicrometer carbon spheres are demonstrated as an efficient additive for improving the tribological performance of lubricating oils. Carbon spheres with ultrasmooth surfaces are fabricated by ultrasound assisted polymerization of resorcinol and formaldehyde followed by controlled heat treatment. The tribological behavior of the new lubricant mixture is investigated in the boundary and mixed lubrication regimes using a pin-on-disk apparatus and cylinder-on-disk tribometer, respectively. The new lubricant composition containing 3 wt % carbon spheres suspended in a reference SAE 5W30 engine oil exhibited a substantial reduction in friction and wear (10-25%) compared to the neat oil, without change in the viscosity. Microscopic and spectroscopic investigation of the carbon spheres after the tribological experiments illustrated their excellent mechanical and chemical stability. The significantly better tribological performance of the hybrid lubricant is attributed to the perfectly spherical shape and ultrasmooth surface of carbon sphere additive filling the gap between surfaces and acting as a nanoscale ball bearing.
This study investigates the effects of Multistage Heat Treatment (MSHT) on the development of an oxide-scale layer on the surface of FeCrAl sintered-metal-fibers. The oxide-scale layer was developed using an MSHT cycle at 930 °C for 1 h, followed by 960 °C for 1 h, and finally at 990 °C for 2 h. In this study, three samples were considered: Sample 1 was kept without thermal oxidation, while Samples 2 and 3 were exposed to one and eighteen MSHT cycles. Thermo-gravimetric analyses show that the weight gain of the heat-treated sample slows with time, confirming the growth of the protective oxide-scale layer. Scanning electron microscope images, after one MSHT cycle, reveal nonuniform oxide-scale growth with platelet-like on the surface. After eighteen MSHT cycles, however, clumped particles formed on the surface of the fibers. Atomic force microscopy was utilized to study the surface topography of the fibers. The results show that MSHT increases the surface roughness, where the surface roughness of one and eighteen MSHT cycles are the same. The x-ray diffraction analyses of the baseline sample and the sample with one MSHT cycle show pattern peaks of crystalline Fe2CrAl. In contrast, the results of eighteen MSHT cycles displayed diffraction pattern peaks of crystalline Cr and stable α-Al2O3. In summary, the results of this study reveal the changing nature of the oxide-scale layer. The findings of this study form the foundation for new techniques to protect and prepare the FeCrAl fibers as a support for catalysts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.