Background and Objective: In 2019, a corona virus disease (COVID-19) was detected in China that affected millions of people around the world. On 11 March 2020, the WHO declared this disease a pandemic. Currently, more than 200 countries in the world have been affected by this disease. The manual diagnosis of this disease using chest X-ray (CXR) images and magnetic resonance imaging (MRI) is time consuming and always requires an expert person; therefore, researchers introduced several computerized techniques using computer vision methods. The recent computerized techniques face some challenges, such as low contrast CTX images, the manual initialization of hyperparameters, and redundant features that mislead the classification accuracy. Methods: In this paper, we proposed a novel framework for COVID-19 classification using deep Bayesian optimization and improved canonical correlation analysis (ICCA). In this proposed framework, we initially performed data augmentation for better training of the selected deep models. After that, two pre-trained deep models were employed (ResNet50 and InceptionV3) and trained using transfer learning. The hyperparameters of both models were initialized through Bayesian optimization. Both trained models were utilized for feature extractions and fused using an ICCA-based approach. The fused features were further optimized using an improved tree growth optimization algorithm that finally was classified using a neural network classifier. Results: The experimental process was conducted on five publically available datasets and achieved an accuracy of 99.6, 98.5, 99.9, 99.5, and 100%. Conclusion: The comparison with recent methods and t-test-based analysis showed the significance of this proposed framework.
Breast cancer is a common cause of female mortality in developing countries. Screening and early diagnosis can play an important role in the prevention and treatment of these cancers. This study proposes an ensemble learning-based voting classifier that combines the logistic regression and stochastic gradient descent classifier with deep convoluted features for the accurate detection of cancerous patients. Deep convoluted features are extracted from the microscopic features and fed to the ensemble voting classifier. This idea provides an optimized framework that accurately classifies malignant and benign tumors with improved accuracy. Results obtained using the voting classifier with convoluted features demonstrate that the highest classification accuracy of 100% is achieved. The proposed approach revealed the accuracy enhancement in comparison with the state-of-the-art approaches.
Leukemia (blood cancer) diseases arise when the number of White blood cells (WBCs) is imbalanced in the human body. When the bone marrow produces many immature WBCs that kill healthy cells, acute lymphocytic leukemia (ALL) impacts people of all ages. Thus, timely predicting this disease can increase the chance of survival, and the patient can get his therapy early. Manual prediction is very expensive and time-consuming. Therefore, automated prediction techniques are essential. In this research, we propose an ensemble automated prediction approach that uses four machine learning algorithms K-Nearest Neighbor (KNN), Support Vector Machine (SVM), Random Forest (RF), and Naive Bayes (NB). The C-NMC leukemia dataset is used from the Kaggle repository to predict leukemia. Dataset is divided into two classes cancer and healthy cells. We perform data preprocessing steps, such as the first images being cropped using minimum and maximum points. Feature extraction is performed to extract the feature using pre-trained Convolutional Neural Network-based Deep Neural Network (DNN) architectures (VGG19, ResNet50, or ResNet101). Data scaling is performed by using the MinMaxScaler normalization technique. Analysis of Variance (ANOVA), Recursive Feature Elimination (RFE), and Random Forest (RF) as feature Selection techniques. Classification machine learning algorithms and ensemble voting are applied to selected features. Results reveal that SVM with 90.0% accuracy outperforms compared to other algorithms.
The early diagnosis of skin cancer through clinical methods reduces the human mortality rate. The manual screening of dermoscopic images is not an efficient procedure; therefore, researchers working in the domain of computer vision employed several algorithms to classify the skin lesion. The existing computerized methods have a few drawbacks, such as low accuracy and high computational time. Therefore, in this work, we proposed a novel deep learning and Entropy‐Normal Distribution Optimization Algorithm with extreme learning machine (NDOEM)‐based architecture for multiclass skin lesion classification. The proposed architecture consists of five fundamental steps. In the first step, two contrast enhancement techniques including hybridization of mathematical formulation and convolutional neural network are implemented prior to data augmentation. In the second step, two pre‐trained deep learning models, EfficientNetB0 and DarkNet19, are fine‐tuned and retrained through the transfer learning. In the third step, features are extracted from the fine‐tuned models and later the most discriminant features are selected based on novel Entropy‐NDOELM algorithm. The selected features are finally fused using a parallel correlation technique in the fourth step to generate the result feature vectors. Finally, the resultant features are again down‐sampled using the proposed algorithm and the resultant features are passed to the extreme learning machine (ELM) for the final classification. The simulations are conducted on three publicly available datasets as HAM10000, ISIC2018, and ISIC2019 to achieving an accuracy of 95.7%, 96.3%, and 94.8% respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.