The aim of this study was to compare the possible protective effects of N-acetylcysteine (NAC), caffeic acid (CAPE) and vitamin E (Vit-E) on doxorubicin-induced hepatotoxicity. Thirty-two male Wistar albino rats, weighing between 250 and 350 g were supplied and randomly divided into five groups. Animals in study groups were pretreated with a single dose of doxorubicin (Dox), which was administered intraperitoneally (i.p.). Control group (Group I) was treated with intraperitoneal saline injection. Group II did not received any antioxidant agent after the injection. Group III and Group IV were given CAPE and intraperitoneal vitamin E injection for eight days, respectively. Group V received NAC for eight days. The study was finished after 10 days. Tissue samples were collected from all animals and histopathological examination was performed. There was statistically significant difference between the experiment groups and controls by means of mononuclear cell infiltration and diameters of hepatic sinusoid, terminal hepatic venule (central vein) and portal area (portal canal). Changes related with hepatocellular damage were more prominent, whereas there was no significant difference between Dox and NAC given groups histopathologically. It was observed that structural changes were regressed after CAPE administration. However, this recovery was more prominent in vitamin E given group. These findings suggest that Dox induced liver damage could be efficiently reversed by vitamin E administration. It has been found that CAPE, but not NAC has protective effects on Dox-induced hepatocellular damage. Human & Experimental Toxicology (2007) 26, 519—525
Eryptosis is a term to define apoptosis of erythrocytes. Oxidative stress and hyperglycemia, both of which exist in the diabetic intravascular environment, can trigger eryptosis of erythrocytes. In this experimental study, it is presented that the majority of erythrocytes shows caspase-3 immunoreactivity in streptozocin- (STZ)-induced diabetic rats. Besides that, caspase-3 positive erythrocytes are aggregated and attached to vascular endothelium. In conclusion, these results may start a debate that eryptosis could have a role in the diabetic complications.
Transdifferentiation in vivo is an attractive option for autologous replacement of pancreatic b cells in patients with type 1 diabetes. It has been achieved by adenoviral delivery of genes for transcription factors in the liver and pancreas of hyperglycaemic mice. However, these viral approaches are not clinically applicable. We used the hydrodynamic approach to deliver genes Pdx1, Ngn3 (Neurog3) and MafA singly and in combination to livers of normoglycaemic rats. Five expression plasmids were evaluated. Livers were removed 1, 3, 7, 14 and 28 days after gene delivery and assayed by quantitative PCR, semi-quantitative PCR and immunohistology. Functional studies on hyperglycaemic rats were performed. The highest and most sustained expression was from a CpG-depleted plasmid (pCpG) and a plasmid with an in-frame scaffold/matrix attachment region ((pEPI(CMV)). When Pdx1, Ngn3 and MafA were delivered together to normoglycaemic rats with these plasmids, insulin mRNA was detected at all time points and was w50-fold higher with pCpG. Insulin mRNA content of livers at days 3 and 7 was equivalent to that of a pancreas, with scattered insulin-positive cells detected by immunohistology, but levels declined thereafter. Prohormone convertase 1/3 was elevated at days 3 and 7. In hyperglycaemic rats, fasting blood glucose was lower at days 1, 3 and 7 but not thereafter, and body weight was maintained to day 28. We conclude that hydrodynamic gene delivery of multiple transcription factors to rat liver can initiate transdifferentiation to pancreatic b cells, but the process is reversible and probably requires more sustained transcription factor expression.
IL4 and IL-10 levels have a relationship with negative symptoms of disease. Therefore, this study might suggest that immunological processes might have a role in the disease pathophysiology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.