The structural integrity of rail substructure can be compromised due to ballast fouling thus leading to poor ride quality, track instability, and potential train derailment. This problem is quite costly for the railway industry as it increases maintenance costs, creates operational downtimes, and generates conditions for potential train derailment events. A creative procedure to reduce the detrimental effects of ballast fouling is the application of polyurethane (PUR) as a void-filling and particle-bonding technology. This study assesses the use of expanding rigid PUR foam to remediate substructure deficiencies in railroad track at field-scale. The investigated site is constructed on a 3-m-high embankment, has a length of 80 m with standard rail gauge, and was historically used to stage coal cars. Field investigation profiles showed the presence of soft, wet subgrade beneath the ballast/subballast. Railway substructure condition was evaluated by measuring the track modulus (u) before and after injection. Track modulus is considered as a representative parameter to quantify the structural integrity of a railway track system. The track rating improved from a “poor” (u = 8 MPa) initial condition to an “average” (u = 15.2 MPa) condition after injection, which represents a 90 % improvement in track modulus. This field study shows the potential of using strategic injections of rigid PUR foam to remediate railway substructure in localized sections of track, such as at frogs, intersections, and bridge approaches.
The shortage of natural aggregates has compelled the developers to devote their efforts to finding alternative aggregates. On the other hand, demolition waste from old constructions creates huge land acquisition problems and environmental pollution. Both these problems can be solved by recycling waste materials. The current study aims to use recycled brick aggregates (RBA) to develop eco-friendly pervious concrete (PC) and investigate the new concrete’s structural performance and pore structure distributions. Through laboratory testing and image processing techniques, the effects of replacement ratio (0%, 20%, 40%, 60%, 80%, and 100%) and particle size (4.75 mm, 9.5 mm, and 12.5 mm) on both structural performance and pore feature were analyzed. The obtained results showed that the smallest aggregate size (size = 4.75 mm) provides the best strength compared to the large sizes. The image analysis method has shown the average pore sizes of PC mixes made with smaller aggregates (size = 4.75 mm) as 1.8–2 mm, whereas the mixes prepared with an aggregate size of 9.5 mm and 12.5 mm can provide pore sizes of 2.9–3.1 mm and 3.7–4.2 mm, respectively. In summary, the results confirmed that 40–60% of the natural aggregates could be replaced with RBA without influencing both strength and pore features.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.