The ongoing coronavirus disease 2019 (COVID-19) outbreak in Wuhan, China, was triggered and unfolded quickly throughout the globe by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The new virus, transmitted primarily through inhalation or contact with infected droplets, seems very contagious and pathogenic, with an incubation period varying from 2 to 14 days. The epidemic is an ongoing public health problem that challenges the present global health system. A worldwide social and economic stress has been observed. The transitional source of origin and its transport to humans is unknown, but speedy human transportation has been accepted extensively. The typical clinical symptoms of COVID-19 are almost like colds. With case fatality rates varying from 2 to 3 percent, a small number of patients may experience serious health problems or even die. To date, there is a limited number of antiviral agents or vaccines for the treatment of COVID-19. The occurrence and pathogenicity of COVID-19 infection are outlined and comparatively analyzed, given the outbreak’s urgency. The recent developments in diagnostics, treatment, and marketed vaccine are discussed to deal with this viral outbreak. Now the scientist is concerned about the appearance of several variants over the globe and the efficacy of the vaccine against these variants. There is a need for consistent monitoring of the virus epidemiology and surveillance of the ongoing variant and related disease severity.
The effect of thermomechanical processing conditions on Nb clustering and precipitation in both austenite and ferrite in a Nb-Ti microalloyed steel was studied using electron microscopy and atom probe tomography. A decrease in the deformation temperature increased the Nb-rich precipitation in austenite and decreased the extent of precipitation in ferrite. Microstructural mechanisms that explain this variation are discussed.
The global cancer burden of new cases of various types rose with millions of death in 2018. Based on the data extracted by GLOBOCAN 2018, gastric cancer (GC) is the third leading cause of mortality related to cancer across the globe. Carcinogenic or oncogenic infections associated with Helicobacter pylori (Hp) are regarded as one of the essential risk factors for GC development. It contributes to the increased production of cytokines that cause inflammation prior to their growth in the host cells. Hp infections and specific types of polymorphisms within the host cells encoding cytokines are significant contributors to the hostʼs increased susceptibility in terms of the development of GC. Against the backdrop of such an observation is that only a small portion of the cells infected can become malignant. The diversities are a consequence of the differences in the pathogenic pathway of the Hp, susceptibility of the host, environmental conditions, and interplay between these factors. It is evident that hosts carrying cytokine genes with high inflammatory levels and polymorphism tend to exhibit an increased risk of development of GC, with special emphasis being placed on the host cytokines gene polymorphisms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.