Diabetic Retinopathy (DR) is a predominant cause of visual impairment and loss. Approximately 285 million worldwide population is affected with diabetes, and one-third of these patients have symptoms of DR. Specifically, it tends to affect the patients with 20 years or more with diabetes, but it can be reduced by early detection and proper treatment. Diagnosis of DR by using manual methods is a time-consuming and expensive task which involves trained ophthalmologists to observe and evaluate DR using digital fundus images of the retina. This study aims to systematically find and analyze high-quality research work for the diagnosis of DR using deep learning approaches. This research comprehends the DR grading, staging protocols and also presents the DR taxonomy. Furthermore, identifies, compares, and investigates the deep learning-based algorithms, techniques, and, methods for classifying DR stages. Various publicly available dataset used for deep learning have also been analyzed and dispensed for descriptive and empirical understanding for real-time DR applications. Our in-depth study shows that in the last few years there has been an increasing inclination towards deep learning approaches. 35% of the studies have used Convolutional Neural Networks (CNNs), 26% implemented the Ensemble CNN (ECNN) and, 13% Deep Neural Networks (DNN) are amongst the most used algorithms for the DR classification. Thus using the deep learning algorithms for DR diagnostics have future research potential for DR early detection and prevention based solution.
Aiming to increase the shelf life of food, researchers are moving toward new methodologies to maintain the quality of food as food grains are susceptible to spoilage due to precipitation, humidity, temperature, and a variety of other influences. As a result, efficient food spoilage tracking schemes are required to sustain food quality levels. We have designed a prototype to track food quality and to manage storage systems at home. Initially, we have employed a Convolutional Neural Network (CNN) model to detect the type of fruit and veggies. Then the proposed system monitors the gas emission level, humidity level, and temperature of fruits and veggies by using sensors and actuators to check the food spoilage level. This would additionally control the environment and avoid food spoilage wherever possible. Additionally, the food spoilage level is informed to the customer by an alert message sent to their registered mobile numbers based on the freshness and condition of the food. The model employed proved to have an accuracy rate of 95%. Finally, the experiment is successful in increasing the shelf life of some categories of food by 2 days.
Distributed Denial of Service (DDoS) attack is known to be one of the most lethal attacks in traditional network architecture. In this attack, the attacker uses botnets to overwhelm network resources. Botnets can be randomly compromised computers or IoT devices that are used to generate excessive traffic towards the victim, and as a result, legitimate users cannot access the services. In this research, software-defined networking (SDN) has been suggested as a solution to fight DDoS attacks. SDN uses the idea of centralized control and segregation of the data plane from the control plane. SDN is more flexible, and policy implementation on the centralized controller is easy. SDN is now being widely used in modern network paradigms because it has enhanced security. In this work, an entropy-based statistical approach has been suggested to detect and mitigate TCP SYN flood DDoS attacks. The proposed algorithm uses a three-phased detection scheme to minimize the false-positive rate. Entropy, standard deviation, and weighted moving average have been used for intrusion detection. Multiple experiments were performed, and the results show that the suggested approach is more reliable and lightweight and has a minimal false-positive rate.
Advancement in technology has led to innovation in equipment, and the number of devices is increasing every day. Industries are introducing new devices every day and predicting 50 billion connected devices by 2022. These devices are deployed through the Internet, called the Internet of Things (IoT). Applications of IoT devices are weather prediction, monitoring surgery in hospitals, identification of animals using biochips, providing tracking connectivity in automobiles, smart home appliances, etc. IoT devices have limitations related to security at both the software and hardware ends. Secure user interfaces can overcome software-level limitations like front-end-user interfaces are accessed easily through public and private networks. The front-end interfaces are connected to the localized storage to contain data produced by the IoT devices. Localized storage deployed in a closed environment connected to IoT devices is more efficient than online servers from a security perspective. Blockchain has emerged as a technology or technique with capabilities to achieve secure administrational authentication and accessibility to IoT devices and their computationally produced data in a decentralized way with high reliability, interrogation, and resilience. In this paper, we propose device, end-user, and transactional authentication techniques using blockchain-embedded algorithms. The localized server interacts with the user interface to authenticate IoT devices, end-users, and their access to IoT devices. The localized server provides efficiency by reducing the load on the IoT devices by carrying out end-user heavy computational data, including end-user, IoT device authentication, and communicational transactions. Authentication data are placed on the public ledger in block form, distributed over the system nodes through blockchain algorithms.
Designing an efficient, reliable, and stable algorithm for underwater acoustic wireless sensor networks (UA-WSNs) needs immense attention. It is due to their notable and distinctive challenges. To address the difficulties and challenges, the article introduces two algorithms: the multilayer sink (MuLSi) algorithm and its reliable version MuLSi-Co using the cooperation technique. The first algorithm proposes a multilayered network structure instead of a solid single structure and sinks placement at the optimal position, which reduces multiple hops communication. Moreover, the best forwarder selection amongst the nodes based on nodes’ closeness to the sink is a good choice. As a result, it makes the network perform better. Unlike the traditional algorithms, the proposed scheme does not need location information about nodes. However, the MuLSi algorithm does not fulfill the requirement of reliable operation due to a single link. Therefore, the MuLSi-Co algorithm utilizes nodes’collaborative behavior for reliable information. In cooperation, the receiver has multiple copies of the same data. Then, it combines these packets for the purpose of correct data reception. The data forwarding by the relay without any latency eliminates the synchronization problem. Moreover, the overhearing of the data gets rid of duplicate transmissions. The proposed schemes are superior in energy cost and reliable exchanging of data and have more alive and less dead nodes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.