Brain tumor (BTs) is considered one of the deadly, destructive, and belligerent disease, that shortens the average life span of patients. Patients with misdiagnosed and insufficient medical treatment of BTs have less chance of survival. For tumor analysis, magnetic resonance imaging (MRI) is often utilized. However, due to the vast data produced by MRI, manual segmentation in a reasonable period of time is difficult, which limits the application of standard criteria in clinical practice. So, efficient and automated segmentation techniques are required. The accurate early detection and segmentation of BTs is a difficult and challenging task in biomedical imaging. Automated segmentation is an issue because of the considerable temporal and anatomical variability of brain tumors. Early detection and treatment are therefore essential. To detect brain cancers or tumors, different classical machine learning (ML) algorithms have been utilized. However, the main difficulty with these models is the manually extracted features. This research provides a deep hybrid learning (DeepTumorNetwork) model of binary BTs classification and overcomes the above-mentioned problems. The proposed method hybrid GoogLeNet architecture with a CNN model by eliminating the 5 layers of GoogLeNet and adding 14 layers of the CNN model that extracts features automatically. On the same Kaggle (Br35H) dataset, the proposed model key performance indicator was compared to transfer learning (TL) model (ResNet, VGG-16, SqeezNet, AlexNet, MobileNet V2) and different ML/DL. Furthermore, the proposed approach outperformed based on a key performance indicator (Acc, Recall, Precision, and F1-Score) of BTs classification. Additionally, the proposed methods exhibited high classification performance measures, Accuracy (99.51%), Precision (99%), Recall (98.90%), and F1-Score (98.50%). The proposed approaches show its superiority on recent sibling methods for BTs classification. The proposed method outperformed current methods for BTs classification using MRI images.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.