Cesium lead bromide (CsPbBr3) perovskite has recently gained significance owing to its rapidly increasing performance when used for light-emitting devices. In this study, we used density functional theory to determine the structural, electronic, and optical properties of the cubic, tetragonal, and orthorhombic temperature-dependent phases of CsPbBr3 perovskite using the full-potential linear augmented plane wave method. The electronic properties of CsPbBr3 perovskite have been investigated by evaluating their changes upon exerting spin-orbit coupling (SOC). The following exchange potentials were used: the local density approximation (LDA), Perdew–Burke–Ernzerhof generalized gradient approximation (PBE-GGA), Engel–Vosko GGA (EV-GGA), Perdew–Burke–Ernzerhof GGA revised for solids (PBEsol-GGA), modified Becke–Johnson GGA (mBJ-GGA), new modified Becke–Johnson GGA (nmBJ-GGA), and unmodified Becke–Johnson GGA (umBJ-GGA). Our band structure results indicated that the cubic, tetragonal, and orthorhombic phases have direct energy bandgaps. By including the SOC effect in the calculations, the bandgaps computed with mBJ-GGA and nmBJ-GGA were found to be in good agreement with the experimental results. Additionally, despite the large variations in their lattice constants, the three CsPbBr3 phases possessed similar optical properties. These results demonstrate a wide temperature range of operation for CsPbBr3.
High-quality thin films were obtained directly by spin-coating glass substrates with suspensions of powdered cesium lead bromide (CsPbBr3) perovskite quantum dots (PQDs). The structural properties of the films were characterized via transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD) analysis, and atomic force microscopy (AFM). The crystal structure of the CsPbBr3 PQDs was unique. The optical behavior of the CsPbBr3 PQDs, including absorption and emission, was then investigated to determine the absorption coefficient and band gap of the material. The CsPbBr3 PQDs were evaluated as active lasing media and irradiated with a pulsed laser under ambient conditions. The PQDs were laser-active when subjected to optical pumping for pulse durations of 70–80 ps at 15 Hz. Amplified spontaneous emission (ASE) by the CsPbBr3 PQD thin films was observed, and a narrow ASE band (∼5 nm) was generated at a low threshold energy of 22.25 μJ cm–2. The estimated ASE threshold carrier density (n th) was ∼7.06 × 1018 cm–3. Band-gap renormalization (BGR) was indicated by an ASE red shift and a BGR constant of ∼27.10 × 10–8 eV. A large optical absorption coefficient, photoluminescence (PL), and a substantial optical gain indicated that the CsPbBr3 PQD thin films could be embedded in a wide variety of cavity resonators to fabricate unique on-chip coherent light sources.
In the current study, the fluorescence emission spectra (FES) and Stokes shift spectra (SSS) of blood and urine samples of cervical cancer patients were obtained and compared to those of normal controls. Both spectra showed that the relative intensity of biomolecules such as porphyrin, collagen, Nicotinamide adenine dinucleotide, and flavin were quite out of proportion in cervical cancer patients. The biochemical mechanism for the elevation of these fluorophores is not yet definitive; nevertheless, these biomolecules could serve as tumor markers for diagnosis, screening, and follow-up of cervical cancers. To the best of our knowledge, this is the first report on FES and SSS of blood and urine of cervical cancer patients to give a sensitivity of 80% and specificity of 78%.
Different weight ratios of poly(9,9‐dioctylfluorene‐2,7‐diyl) (PFO)/poly[2‐methoxy‐5‐(2‐ethylhexyloxy)‐1,4‐phenylenevinylene] (MEH‐PPV) hybrid thin films, with and without a SiO2/TiO2 nanocomposite (NC), were successfully prepared using a solution blending method. All samples were deposited onto glass substrates by a spin coating technique to produce homogeneous thin films. The effect of the SiO2/TiO2 NC on the enhancement of the energy transfer mechanism in the PFO/MEH‐PPV hybrids was investigated. The energy transfer parameters were calculated on the basis of the absorption and emission measurements. The long‐range dipole–dipole energy transfer (Förster type) between the acceptor and donor molecules was enhanced in the presence of the SiO2/TiO2 NC in the hybrid thin films. The addition of the SiO2/TiO2 NC in the PFO/MEH‐PPV hybrids reduced the distance between the donor and acceptor molecules more than the individual addition of SiO2 or TiO2 nanoparticles. Moreover, the direct relationships between the acceptor contents and energy transfer parameters, such as the energy transfer radius (RDA), energy transfer efficiency (η), and energy transfer probability (PDA), were estimated using theoretical fittings. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019, 136, 47845.
Amplified spontaneous emission (ASE) threshold in CsPbBr3 quantum dot films is systematically reduced by introducing high quality TiO2 compact layer grown by atomic-layer deposition. Uniform and pinhole-free TiO2 films of thickness 10, 20 and 50 nm are used as a substrates for CsPbBr3 quantum dot films to enhance amplified spontaneous emission performance. The reduction is attributed indirectly to the improved morphology of TiO2 compact layer and subsequently CsPbBr3 active layer as grown on better quality substrates. This is quantified by the reduced roughness of the obtained films to less than 5 nm with 50 nm TiO2 substrate. Considering the used growth method for the quantum dot film, the improved substrate morphology maintains better the structure of the used quantum dots in the precursor solution. This results in better absorption and hence lower threshold of ASE. Besides that, the improved film quality results further in reducing light scattering and hence additional slight optical enhancement. The work demonstrates a potential venue to reduce the amplified spontaneous emission threshold of quantum dot films and therefore enhanced their optical performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.