The production of alginate microbeads with and without somatic tissue was investigated using an electrostatic droplet generator with a custom-made fixed (5.7 kV) and variable (0-20 kV) high-voltage power supply. The effects of applied potential, needle size, and alginate concentration were assessed as well as the immobilization of carnation callus cells. The high-voltage output from the power supply depended on whether the low-voltage input was increasing or decreasing. This hysteresis effect may be due to the electrical properties of the oscillator in the high-voltage source. While a short electrode distance and a high needle gauge were important for producing small alginate bead diameters (e.g., 100 µm), alginate concentration in the range 1-3% (w/v) was not a key factor. Somatic tissue encapsulated using 2% sodium alginate retained viability over a 2-month culture period.
On-farm measurements and observations of water flow, water costs and irrigation labour inputs at the individual parcel level were made in case studies of smallholder irrigation systems in sub-Saharan Africa and south-eastern Arabia. The systems, in which the water source supplied either single or multiple users, were analysed to address the fundamental issues of labour allocation for on-farm water management as this has important consequences for the success of such systems. Results show that the costs associated with accessing water influenced labour input, because when they were low the farmers tended to increase the irrigation rate and reduce the amount of time they spent distributing the water within their parcels. Conversely when water costs were high, lower flow rates and more time spent in water distribution were observed, and this resulted in more uniform irrigation and higher irrigation efficiency. Also, opportunities and demands for farmers to use their labour for activities other than irrigation can lead them to modify operational or physical aspects of the system so that they can reduce the time they spend distributing water within the parcels, particularly when the water is relatively cheap. Awareness and better understanding of how farmers may allocate their labour for water management will lead to more effective planning, design and management of smallholder irrigation systems.
The aflaj systems represent unique irrigation technologies that have been implemented in the Sultanate of Oman. This innovative system, referred to as “falaj” in the singular form, is composed of a sophisticated network of underground tunnels and open-air channels designed to access shallow subterranean water tables, thereby providing water for residential and agricultural use. The aflaj systems have played a significant role in supporting sustainable water resource management in arid and semiarid regions, making a notable contribution to the socioeconomic development of the country. The alteration of land use and land cover (LULC) in arid and semiarid regions can have significant consequences for hydrological systems, affecting the ability of local ecosystems to manage fresh surface and groundwater resources. These changes are often caused by both natural and anthropogenic factors. To investigate the impact of LULC changes on aflaj systems in the northern part of Oman, we utilized satellite imagery, aflaj data, and spatial analytical and image processing techniques within the framework of geographic information systems (GIS) and remote sensing. In the first part of the study, we quantified the changes in LULC and their impact on aflaj systems in seven cities in Oman due to urban expansion. In the second part, we evaluated the effect of LULC on groundwater for four major aflaj between 1985 and 2021. The study area was divided into four primary LULC classifications: vegetation, bodies of water, metropolitan areas, and bare soil. The classification maps demonstrated a high overall accuracy of 90% to 95%, indicating satisfactory performance. Our results revealed a significant reduction in vegetation areas between 1985 and 2021, primarily shifting from bare soil (BS) to urban areas (UAs) and from vegetation cover (VC) to BS, due to the reduction of groundwater resources. Over the four study periods (1985–1990, 1990–2000, 2000–2013, and 2013–2021), the percentages of the total area of Falaj Al-Muyasser, Falaj Daris, Falaj Al-Maliki, and Falaj Al-Khatmeen that transformed from agricultural lands to UAs were 40%, 39%, 32%, and 8%, respectively. Our study highlights the need for appropriate land management and planning to ensure the most effective solutions are utilized to meet social and economic sustainability requirements. In conclusion, our study presents a comprehensive analysis of LULC changes and their impact on aflaj systems over a 36-year period, providing new insights into the potential effects of LULC changes on groundwater resources and offering a basis for informed decision making on land management in arid and semiarid areas.
Due to the geographical location of Oman in an arid zone, agricultural production depends fully on irrigation. The traditional irrigation systems (Aflaj, sing. falaj) supply more than one third of water for agriculture. Falaj is defined in the context of this paper as a canal system which provides water for domestic and agricultural uses. Oman has 3,107 active Aflaj producing about 680 Mm3 of water per year. The main objective of this study was to estimate the irrigation performance of Aflaj in Oman. Falaj al-Dariz and al-Nujaid were chosen as case studies. Both Aflaj are located in an extremely arid environment, where the rainfall is low and evapotranspiration is high. The study utilized an approach to estimate the irrigation performance of Aflaj by considering the falaj as a single unit of irrigation. The irrigation demand/supply ratio (D/S) was used in the analysis as a tool of evaluation. Date palm, the dominant crop irrigated by Aflaj, was selected for the analysis. In falaj al-Dariz the date palms were slightly under irrigated on a yearly basis. On a monthly basis, in winter, the D/S was below 0.6 and in summer it was above 1.0. On the other hand, falaj al-Nujaid was supplying too much water than the date palms needed all round the year. In winter the D/S ratio was as low as 0.25. Even in summer, the D/S ratio did not much exceed 1.0.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.