Results from an eight-city noise survey show that road traffic is a major source of environmental noise pollution in Nigeria. The inter-city "fast moving… traffic noise is characteristically different from the intra-city "congested or slow-moving… traffic noise, though, in many cases, they have comparable day-night levels. Noise from congested traffic was found to contain occasional high peaks, and vary more in levels and be more skewed histographically than that from freely flowing traffic. The statistical distribution for the day time L Aeq value has a fairly normal appearance with a mean of 73 dB "A-weighted… and standard deviation of 5.7 dB. Many respondents to the questionnaires distributed in the cities surveyed consider road traffic as the first or second greatest source of annoyance due to noise. However it is considered the most difficult to control. The findings of the survey provide enough baseline data for engineering controls and interim legislation against traffic noise pollution. © 1998 Institute of Noise Control Engineering. †S0736-2501"98…00604-3 ‡
Evaluation and analysis of noise pollution levels have been carried out to determine the level of noise and its sources in Ilorin metropolis. Noise measurements have been done in the morning, at noon, in the evening, and at night to determine noise pollution all over the city. The selected areas of study are commercial centers, road junctions/busy roads, passenger loading parks, and high-density and low-density residential areas. The road junctions had the highest noise pollution levels, followed by commercial centers. The results of this study show that the noise levels in Ilorin metropolis exceeded allowed values at 30 of 42 measurements points. There is a significant difference (P<0.05) in the noise pollution levels and traffic noise index in all the locations. From the measured noise values, a map of noise pollution was developed for Ilorin. Many solutions proposed for noise abatement in the city are set out.
The noise pollution is a major problem for the quality of life in urban areas. This study was conducted to compare the noise pollution levels at busy roads/road junctions, passengers loading parks, commercial, industrial and residential areas in Ilorin metropolis. A total number of 47-locations were selected within the metropolis. Statistical analysis shows significant difference (P < 0.05) in noise pollution levels between industrial areas and low density residential areas, industrial areas and high density areas, industrial areas and passengers loading parks, industrial areas and commercial areas, busy roads/road junctions and low density areas, passengers loading parks and commercial areas and commercial areas and low density areas. There is no significant difference (P > 0.05) in noise pollution levels between industrial areas and busy roads/road junctions, busy roads/road junctions and high density areas, busy roads/road junctions and passengers loading parks, busy roads/road junctions and commercial areas, passengers loading parks and high density areas, passengers loading parks and commercial areas and commercial areas and high density areas. The results show that Industrial areas have the highest noise pollution levels (110.2 dB(A)) followed by busy roads/Road junctions (91.5 dB(A)), Passengers loading parks (87.8 dB(A)) and Commercial areas (84.4 dB(A)). The noise pollution levels in Ilorin metropolis exceeded the recommended level by WHO at 34 of 47 measuring points. It can be concluded that the city is environmentally noise polluted and road traffic and industrial machineries are the major sources of it. Noting the noise emission standards, technical control measures, planning and promoting the citizens awareness about the high noise risk may help to relieve the noise problem in the metropolis.
In this work, noise level in five selected processing and manufacturing industries in Ilorin are evaluated and compared. Emphasis is given to noise emitted by individual industrial machinery from the selected industries. Event L(Aeq) and L(N) cycles were studied to identify the noisy machines and to generate baseline data. Findings show that hammer mill machine from mineral-bearing rock-crushing mills produced the highest average noise [98.4 dB(A)], an electric generator 1 [95.6 dB(A)] from the soft drink bottling industry, an electric generator [97.7 dB(A)] from the beer brewing and bottling industry, a vacuum pump [93.1 dB(A)] from the tobacco making industry, and an electric generator 2 [94.1 dB(A)] from the mattress-making industry. The highest and lowest average noise exposure levels are recorded in mineral-bearing rock-crushing mills [93.16 dB(A)] and the mattress making industry [84.69 dB(A)], respectively. The study shows that, at 95% confidence level, there is significant difference (P < 0.05) in noise levels in the industries surveyed. The percentages of machines that emit noise above Federal Environmental Protection Agency and Occupational Safety and Health Administration recommendations [90 dB(A)] are from the soft drink bottling industry (83.3%), the beer brewing and bottling industry (42.9%), the tobacco making industry (71.4%), the mattress making industry (11.1%), and minerals crushing mills (87.5%). In the past 20 years, the noise levels in the soft drink bottling industry were reduced by 0.58 dB(A), and those of the beer brewing and bottling industry were reduced by 9.66 dB(A). However, that of the mattress making industry increased by 2.69 dB(A). On average, the noise level in these industries has been reduced by 2.52 dB(A). The results of this study show that the noise control measures put in place have significant impacts on the noise exposure level in the industries surveyed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.