<span lang="EN-US">Reserve the wireless sensor networks (WSNs) lifetime for as long as possible is a current goal. In WSNs, sensors are often limited in power. However, uneven power consumption (UPC) reduces lifetime, and its deterioration is considered one of the most critical problems. Therefore, balancing the energy consumption is a significant issue in the WSN, necessitating a routing protocol that is energy-efficient that extends the life of the network. A few protocols have been used to balance energy use across network nodes. This paper proposed a routing protocol energy-saving called Bacterial foraging optimization routing protocol (BFORP). BFORP attempts to investigate the problem of the life of WSNs. It can decrease the routing of excessive messages that may result in severe energy waste by recycling the information that frequents the source node into the sink. In the proposed method, the preferable node in the sending routes may be chosen by prioritizing the lowest traffic load, the highest residual energy, and the shortest path to the sink. In comparison to the known protocols used in routing, the results of the simulation have proven the efficacy of the suggested protocol in lowering energy employment and reducing the delay of end-to-end.</span>
Computer networks are used more frequently for time-sensitive applications like voice over internet protocol and other communications. In computer networks, quality of service (QoS) can be crucial since it makes it easier to assess a network's performance and offers mechanisms for enhancing its performance. As a result, understanding the QoS provided by networks is essential for both network users and service providers to assess how well the transmission requirements of different applications are satisfied and to implement improvements to network performance. Next-generation monitoring systems must not only detect network performance deterioration instantly but also pinpoint the underlying cause of quality of service problems to achieve strict network standards. A brand-new fuzzy logic-based algorithm is suggested as a solution to this issue. Thus, the proposed approach was evaluated and compared with probabilistic neural networks (PNN) and Bayesian classification, as well as network performance measurement, latency, jitter, and packet loss. All approaches correctly classified the QoS categories, although generally, the fuzzy approach outperformed PNN and Bayesian. An improved comprehension of the network performance is acquired by precisely determining its QoS.Povzetek: Razvit je nov algoritem za odkrivanje vzroka za poslabšano kvaliteto storive v omrežjih.
Because of the reliability of deployment, cost efficiency, and flexibility of ad-hoc wireless local networks (WLAN). These wireless networks have grown to be the everywhere connection solution in residential and public access networking protocols. It is important to know which strategy performs better with the least amount of delay. The Multiple Access Control protocols (MAC) that are relied on ALOHA, and Carrier Sense Multiple Access with collision avoidance (CSMA/CA) as random access techniques, have substantially aided the rapid growth of such wireless access networks. This work provides a model-based design approach for modeling CSMA/CA and ALOHA random-access protocols for packetizing wireless networks. We analyze the TX and Back-off waveforms of the PHY/MAC transceiver of three radio nodes under CSMA/CA and ALOHA operation modes and compare the obtained results of the PHY/MAC Transceiver for the network nodes according to these modes. Every node is within a range such that the communication between each couple of nodes can be interfered with and received data from the third node. The MAC layer and the logical link control function composed the data link layer. Since the same radio band is used for TX and RX, the MAC function employed here is CSMA/CA and ALOHA, which had also called a random back-off. The MAC layer sends a control signal to the TX block to transmit either a data frame or an acknowledgment frame. The frame contents are loaded in the look-up tables. The contents can be changed in the workspace. The output of this block is a complex baseband IQ signal. The obtained results show the effectiveness of CSMA/CA over ALOHA modes when comparing the corresponding Back-off waveforms and when calculating the throughput values of the three network nodes
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.