Meat is the most valuable livestock product since it is one of the main sources of protein for human consumption. Meat quality can be evaluated according to the following parameters: pH, amount of lactic acid, volatile fatty acids, bounded water, solubility of proteins, color, and tenderness. The meat composition and physical properties of muscles have been characterized for ensuring improved eating quality. Thus, the purpose of this paper was to review the major chemical compositional and physicochemical properties of meat and, at the same time, its quality attributes and factors that affect quality of meat. A number of structural features of meat as connective tissue, muscle fibers, and tendon that attaches the muscle to the bone are visible in joint meat examined through naked eyes. Water is quantitatively the most important component of meat comprising up to 75% of weight. Meat is also composed of amino acids, fatty acids, vitamins, minerals, and other important ingredients. Quality factors perceived by consumers are related to sensory attributes (e.g., color, tenderness, and flavor), nutritional properties (e.g., calories, vitamins’ content, and fatty acids’ profile), and appearance (e.g., exudation, marbling, and visible amount of fat). However, fresh meat quality can be defined instrumentally including composition, nutrients, color, water-holding capacity, tenderness, functionality, flavors, spoilage, and contamination. Visual inspection based on sensory quality attributes and different chemical methods are used to analyze meat quality. Other methods such as computer vision and imaging spectroscopy, gas chromatographic analysis, near-infrared technology, dual-energy X-ray absorptiometry, and computerized tomography scanning are also used in the meat industry. So, the aim of the present review is to review quality characteristics of cattle meat and its composition constituents.
Background: Childhood stunting and malnutrition condemn millions of people globally to a life of disadvantage and cognitive and physical impairment. Though increasing egg consumption is often seen as an important solution for low and middle income countries (including Ethiopia), emerging evidence suggests that greater exposure to poultry feces may also inhibit child growth due to the effects of enteric bacteria, especially Campylobacter, on gut health. Methods: In this rapid ethnographic study, we explored village poultry production, child dietary practices, and environmental hygiene conditions as they relate to Campylobacter risk and intervention in 16 villages in Haramaya Woreda, Eastern Ethiopia. Results: In the study area, we found that women assumed primary responsibility to care for both chickens and children: in feeding, housing, and healthcare. Most chickens were free-range local indigenous breeds, and flock sizes were small and unstable due to epidemics, seasonal trends, reproductive patterns, and lack of food. Generally, eggs were seen as "too luxurious" to be eaten, and were predominantly sold at local markets for scarce cash, despite high malnutrition rates. Local narratives of extreme poverty, social dietary norms, parental fatalism, and lack of "dietary consciousness" (as it was called) were invoked to explain this. We found that homesteads were highly contaminated with human and animal feces. Although community members viewed chicken feces and poultry gastrointestinal contents as particularly noxious in comparison to other animals because of their feeding behaviour, they did not relate them to any particular disease. Shared human-animal housing and childcare practices place children at high risk of exposure to enteric bacteria from animal manure, despite daily routines designed to manage the domestic landscape.
IntroductionUndernutrition is an underlying cause of mortality in children under five (CU5) years of age. Animal-source foods have been shown to decrease malnutrition in CU5. Livestock are important reservoirs for Campylobacter bacteria, which are recognised as risk factors for child malnutrition. Increasing livestock production may be beneficial for improving nutrition of children but these benefits may be negated by increased exposure to Campylobacter and research is needed to evaluate the complex pathways of Campylobacter exposure and infection applicable to low-income and middle-income countries. We aim to identify reservoirs of infection with Campylobacter spp. of infants in rural Eastern Ethiopia and evaluate interactions with child health (environmental enteric dysfunction and stunting) in the context of their sociodemographic environment.Methods and analysisThis longitudinal study involves 115 infants who are followed from birth to 12 months of age and are selected randomly from 10 kebeles of Haramaya woreda, East Hararghe zone, Oromia region, Ethiopia. Questionnaire-based information is obtained on demographics, livelihoods, wealth, health, nutrition and women empowerment; animal ownership/management and diseases; and water, sanitation and hygiene. Faecal samples are collected from infants, mothers, siblings and livestock, drinking water and soil. These samples are analysed by a range of phenotypic and genotypic microbiological methods to characterise the genetic structure of the Campylobacter population in each of these reservoirs, which will support inference about the main sources of exposure for infants.Ethics and disseminationEthical approval was obtained from the University of Florida Internal Review Board (IRB201903141), the Haramaya University Institutional Health Research Ethics Committee (COHMS/1010/3796/20) and the Ethiopia National Research Ethics Review Committee (SM/14.1/1059/20). Written informed consent is obtained from all participating households. Research findings will be disseminated to stakeholders through conferences and peer-reviewed journals and through the Feed the Future Innovation Lab for Livestock Systems.
A cross-sectional study was conducted from November 2018 to May 2019 in Bishoftu and Dukem in central part of Ethiopia. The objectives of the present study were to isolate and identify S. aureus, E. coli, and Salmonella from dairy cattle, personnel, and equipment at farms. In addition to this, antimicrobial resistance profiles of the isolates were determined. A total of 607 samples consisting of fresh cow milk (125), fecal sample (211), nasal swab (211), pooled milkers’ hand swabs (20), pooled floor swabs (20), and tank milk (20) samples were collected from 20 dairy farms, which included 211 animals. Structured questionnaire was designed and administered to dairy farm owners and dairy food consumers to assess their consumption behavior and antibiotics usage. The samples were examined for the presence of S. aureus, E. coli, and Salmonella following standard techniques and procedures outlined by the International Organization for Standardization. Subsequently, 62 (15.7%) of S. aureus were isolated from 396 of the totals analyzed samples for S. aureus. Out of the 62 isolated S. aureus, 35/211(16.7%), 19/125(15.2%), 6/20(30%), 2/20(10%), and 0/20(0%) were from nasal swabs, udder milk, bulk milk, pooled hand swab, and floor swabs, respectively. On the other hand, 30 (7.6%) of E. coli were isolated from 396 of the totals analyzed samples for E. coli. Out of the 30 isolated E. coli, 17/211(8.1%), 12/125(9.6%), 0/20(0%), 0/20(0%), and 1/20(5%) were from faeces, udder milk, bulk milk, pooled hand swab, and floor swabs, respectively. In line with this, 13 (4.8%) of Salmonella were isolated from 271 of the totals analyzed samples for Salmonella. Out of the 13 isolated Salmonella, 10/211(4.7%), 2/20(10%), 0/20(0%), and 1/20(5%) were from faeces, bulk milk, pooled hand swab, and floor swabs, respectively. Subsequently, 62 of S. aureus, 30 of E. coli, and 13 of Salmonella isolates were subjected to antimicrobial susceptibility testing, and all isolates were resistant to at least one or more antimicrobials tested. Penicillin, methicillin, and trimethoprim/sulfamethoxazole are drugs to which a large proportion of isolated S. aureus were highly resistant, which range from 90% to 100%. From 30 tested E. coli, they showed (83%) resistance to Tetracycline and 80% to Vancomycin. The resistance level of 13 isolated Salmonella was 69% to Nalidixic acid and 54% to Vancomycin. Multiple drug resistance was detected in high (98.4%) for S. aureus, (56.7%) for E. coli, and (53.9%) for Salmonella. High proportion of multiple drug resistant in the dairy farm alerts concern for animal and public health as these drugs are used widely for treatment and prophylaxis in animals and humans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.