Colorectal cancer remains one of the leading prevalent cancers in the world and is the fourth most common cause of death from cancer. Unfortunately, the currently utilized chemotherapies fail in selectively targeting cancer cells and cause harm to healthy cells, which results in profound side effects. Researchers are focused on developing anti-cancer targeted medications, which is essential to making them safer, more effective, and more selective and to maximizing their therapeutic benefits. Milk-derived extracellular vesicles (EVs) from camels and cows have attracted much attention as a natural substitute product that effectively suppresses a wide range of tumor cells. This review sheds light on the biogenesis, methods of isolation, characterization, and molecular composition of milk EVs as well as the therapeutic potentials of milk EVs on colorectal cancer.
Acetylcholinesterase (AChE) inhibition is a key element in enhancing cholinergic transmission and subsequently relieving major symptoms of several neurological and neuromuscular disorders. Here, the inhibitory potential of geraniol and its mechanism of inhibition against AChE were elucidated in vitro and validated via an in silico study. Our in vitro enzyme inhibition kinetics results show that at increasing concentrations of geraniol and substrate, Vmax did not change significantly, but Km increased, which indicates that geraniol is a competitive inhibitor against AChE with an IC50 value 98.06 ± 3.92 µM. All the parameters of the ADME study revealed that geraniol is an acceptable drug candidate. A docking study showed that the binding energy of geraniol (−5.6 kcal mol−1) was lower than that of acetylcholine (−4.1 kcal mol−1) with AChE, which exhibited around a 12.58-fold higher binding affinity of geraniol. Furthermore, molecular dynamics simulation revealed that the RMSD of AChE alone or in complex with geraniol fluctuated within acceptable limits throughout the simulation. The mean RMSF value of the complex ensures that the overall conformation of the protein remains conserved. The average values of Rg, MolSA, SASA, and PSA of the complex were 3.16 Å, 204.78, 9.13, and 51.58 Å2, respectively. We found that the total SSE of AChE in the complex was 38.84% (α-helix: 26.57% and β-sheets: 12.27%) and remained consistent throughout the simulation. These findings suggest that geraniol remained inside the binding cavity of AChE in a stable conformation. Further in vivo investigation is required to fully characterize the pharmacokinetic properties, optimization of dose administration, and efficacy of this plant-based natural compound.
Purpose Glutathione S -transferases (GSTT1 and GSTM1) are instrumental in detoxification process of activated carcinogens. Nucleotide excision repair is carried out by DNA helicase encoded by xeroderma pigmentosum group D (XPD) genes and aberrations in the XPD gene predisposes to increased risk of cancer. The present study aimed to investigate GSTT1, GSTM1 and XPD polymorphisms in newly diagnosed chronic myeloid leukemia (CML) patients and to examine the association of these polymorphisms with the risk of developing CML. Patients and Methods This case–control study was carried out from June 2019 to August 2021 involving 150 newly diagnosed patients with CML and an equal number of randomly selected age- and sex-matched healthy individuals. A multiplex-PCR assay was used to genotype GSTT1 null and GSTM1 null polymorphisms. XPD gene polymorphism was detected by PCR-RFLP using predesigned gene-specific primers. Results GSTT1 and GSTM1 null polymorphisms were detected in 42.7% and 61.3% of cases, respectively, compared to 18% and 35.3% for controls. The combination of both GST null polymorphisms revealed a significant association with CML. Frequencies of XPD Lys751Gln genotypes in cases were 62.7% heterozygous Lys/Gln, 24% homozygous Lys/Lys and 13.3% homozygous Gln/Gln, while in the controls were 74.7%, 20%, and 5.3%, respectively. Significant differences were also noted regarding the combination of GSTT1/GSTM1 null with XPD Lys/Lys, and GSTM1 null with XPD Lys/Lys. Conclusion In conclusion, GSTT1 null, GSTM1 null and XPD polymorphisms showed positive association with the risk of development of CML. Furthermore, age and gender did not exhibit any association with the studied polymorphisms, while CML phases were associated with GSTT1 null polymorphism.
Tumour patients are at a high risk of venous thromboembolism (VTE) and the mechanism by which this occurs may involve tumour derived microvesicles (MV). Previously, it has been shown that tumour MV become attached to endothelial cells in static conditions. To investigate whether this process occurs under physiologically relevant flow rates, tumour MV were perfused across a microfluidic device coated with growing human umbilical endothelial cells (HUVECs).Cell lines were screened for their ability to form tumour spheroids and two cell lines, ES-2 and U87 were selected, formed spheroids were transferred to a microfluidic chip and a second endothelial cell biochip was coated with HUVECs and the two chips linked. Media was flowed through the spheroid chip to the endothelial chip and procoagulant activity (PCA) of the tumour media was determined by one-stage prothrombin time assay.Tumour MV were also quantified by flow cytometry before and after interaction with HUVECs.Confocal images showed HUVECs acquired fluorescence from MV attachment. Labelled MV were proportionally lost from MV rich media with time when flowed over HUVECs and was not observed on a control chip. The loss of MV was accompanied by a proportional reduction in PCA.Flow cytometry, confocal microscopy and live flow imagery captured under pulsatile flow confirmed an associated between tumour MV and HUVECs. Tumour MV attached to endothelial cells under physiological flow rates which may be relevant to the VTE pathways in cancer patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.