The connectivity of devices through the internet plays a remarkable role in our daily lives. Many network-based applications are utilized in different domains, e.g., health care, smart environments, and businesses. These applications offer a wide range of services and provide services to large groups. Therefore, the safety of network-based applications has always been an area of research interest for academia and industry alike. The evolution of deep learning has enabled us to explore new areas of research. Hackers make use of the vulnerabilities in networks and attempt to gain access to confidential systems and information. This information and access to systems can be very harmful and portray losses beyond comprehension. Therefore, detection of these network intrusions is of the utmost importance. Deep learning based techniques require minimal inputs while exploring every possible feature set in the network. Thus, in this paper, we present a one-dimensional convolutional neural network-based deep learning architecture for the detection of network intrusions. In this research, we detect four different types of network intrusions, i.e., DoS Hulk, DDoS, and DoS Goldeneye which belong to the active attack category, and PortScan, which falls in the passive attack category. For this purpose, we used the benchmark CICIDS2017 dataset for conducting the experiments and achieved an accuracy of 98.96% as demonstrated in the experimental results.
The advancements of technology in every aspect of the current age are leading to the misuse of data. Researchers, therefore, face the challenging task of identifying these manipulated forms of data and distinguishing the real data from the manipulated. Splicing is one of the most common techniques used for digital image tampering; a selected area copied from the same or another image is pasted in an image. Image forgery detection is considered a reliable way to verify the authenticity of digital images. In this study, we proposed an approach based on the state-of-the-art deep learning architecture of ResNet50v2. The proposed model takes image batches as input and utilizes the weights of a YOLO convolutional neural network (CNN) by using the architecture of ResNet50v2. In this study, we used the CASIA_v1 and CASIA_v2 benchmark datasets, which contain two distinct categories, original and forgery, to detect image splicing. We used 80% of the data for the training and the remaining 20% for testing purposes. We also performed a comparative analysis between existing approaches and our proposed system. We evaluated the performance of our technique with the CASIA_v1 and CASIA_v2 datasets. Since the CASIA_v2 dataset is more comprehensive compared to the CASIA_v1 dataset, we obtained 99.3% accuracy for the fine-tuned model using transfer learning and 81% accuracy without transfer learning with the CASIA_v2 dataset. The results show the superiority of the proposed system.
Smart technologies, such as the Internet of Things (IoT), cloud computing, and artificial intelligence (AI), are being adopted in cities and transforming them into smart cities. In smart cities, various network technologies, such as the Internet and IoT, are combined to exchange real-time information, making the everyday lives of their residents more convenient. However, there is a lack of systematic research on cybersecurity and cyber forensics in smart cities. This paper presents a comprehensive review and survey of cybersecurity and cyber forensics for smart cities. We analysed 154 papers that were published from 2015 to 2022 and proposed a new framework based on a decade of related research papers. We identified four major areas and eleven sub-areas for smart cities. We found that smart homes and the IoT were the most active research areas within the cybersecurity field. Additionally, we found that research on cyber forensics for smart cities was relatively limited compared to that on cybersecurity. Since 2020, there have been many studies on the IoT (which is a technological component of smart cities) that have utilized machine learning and deep learning. Due to the transmission of large-scale data through IoT devices in smart cities, ML and DL are expected to continue playing critical roles in smart city research.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.