This report describes the creation of semipermanent capillary coatings that are compatible with organic-water solvent systems in CE. The coatings are created by simply rinsing the fused-silica capillary with long double-chain cationic surfactants, such as dimethyl-ditetradecyl ammonium bromide (2C(14)DAB), dihexadecyldimethyl ammonium bromide (2C(16)DAB), and dimethyldioctadecyl ammonium bromide (2C(18)DAB). These surfactants generate semipermanent bilayer coatings on the capillary surface, which display a high degree of stability in buffers containing up to 60% v/v of organic solvents, such as methanol and ACN. The coating stability increases with increasing hydrophobicity of the surfactant, i.e., with increasing chain length. For instance, the EOF changes by only 1.2% in a 2C(18)DAB-coated capillary after 130 capillary volumes of rinsing with 60% v/v methanol containing buffer. The bilayer coatings allow separations to be performed without the need to regenerate the coating between runs or to maintain the EOF modifier in the run buffer. Rapid separations (<2 min) of anions and basic drugs with migration time reproducibility of less than 0.5% RSD and efficiencies of 0.4-0.6 million plates/m are obtained. In addition, selectivity changes for small anions and cationic drugs are also observed when the organic solvent content is adjusted.
The use of pure nonaqueous solvents in capillary electrophoresis (CE) can alter the separation selectivity and enhance the solubility of hydrophobic compounds and enables the use of higher voltages. However, control of the electro-osmotic flow (EOF) is essential. In this work, we report the use of self-assembled coatings for EOF modification and elimination of analyte adsorptions onto silica capillaries in pure formamide. Bilayer capillary coatings derived from the double chain cationic surfactant dimethyldioctadecylammonium bromide (2C 18 DAB) reverses the EOF in buffers such as acetate, formate, and phosphate. Reversed EOF of >1.1 × 10 -4 cm 2 /Vs enables the separation of the pharmaceutical drugs propranolol, metoprolol, chloroquine, and chloropheniramine in less than 5 min with efficiencies of 0.2-0.5 million plates/m (66 000 to 165 000 plates). Chemical and physical factors affecting the coating stability and their influence on separation speed and efficiency of the cationic drugs in formamide are also investigated.Résumé : L'utilisation de solvants non aqueux purs dans l'électrophorèse capillaire (EC) peut altérer la sélectivité des séparations et augmenter la solubilité des composés hydrophobes et elle peut aussi permettre d'utiliser des voltages plus élevés. Toutefois, il est essentiel de contrôler l'écoulement électroosmotique (EEO). Dans ce travail, on a utilisé des enduits auto assemblés pour modifier l'écoulement électroosmotique et pour éliminer les adsorptions d'analyse sur les capillaires de silice dans le formamide pur. Des enduits capillaires à double couche dérivés d'une double chaîne de l'agent de surface, bromure de diméthyldioctadécylammonium (2C 18 DAB) permet de renverser l'écoulement électrosta-tique dans des tampons, tels ceux de l'acétate, du formiate ou du phosphate. Des EEO inversés de >1.1× 10 -4 cm 2 /Vs permettent d'effectuer la séparation de médicaments tels, le propranolol, le métoprolol, la chloroquine et la chlorophéniramine en moins de 5 min avec des efficacités allant de 0.2-0.5 million plateaux/m (66 000 à 165 000 plateaux). On a aussi examiné les facteurs chimiques et physiques qui affectent la stabilité des enduits et leur influence sur la vitesse et l'efficacité de séparation des médicaments cationiques Mots-clés : électrophorèse capillaire, agents de surface cationiques, écoulement électroosmotique, formamide, solvants non aqueux.[Traduit par la Rédaction] Diress and Lucy 546
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.