In this paper we propose a system for re-ranking answers for a given question. Our method builds on a siamese CNN architecture which is extended by two attention mechanisms. The approach was evaluated on the datasets of the SemEval-2017 competition for Community Question Answering (cQA), where it achieved 7 th place obtaining a MAP score of 86.24 points on the Question-Comment Similarity subtask.
This paper presents an entirely new, one-million-word annotated corpus for a comprehensive, machine-learning-based preprocessing of text in Modern Standard Arabic. Contrarily to the conventional pipeline architecture, we solve the NLP tasks of word segmentation, POS tagging and named entity recognition as a single sequence labeling task. This single-component configuration results in a faster operation and is able to provide state-of-the-art precision and recall according to our evaluations. The fine-grained output tag set output by our annotator greatly simplifies downstream tasks such as lemmatization. Provided as a trained OpenNLP component, the annotator is publicly free for research purposes.
In this paper we discuss several models we used to classify 25 city-level Arabic dialects in addition to Modern Standard Arabic (MSA) as part of MADAR shared task (sub-task 1). We propose an ensemble model of a group of experimentally designed best performing classifiers on a various set of features. Our system achieves an accuracy of 69.3% macro F1-score with an improvement of 1.4% accuracy from the baseline model on the DEV dataset. Our best run submitted model ranked as third out of 19 participating teams on the TEST dataset with only 0.12% macro F1-score behind the top ranked system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.