The goal of the current work was to create an antibacterial agent by using polycaprolactone/chitosan (PCL/CH) nanofibers loaded with Cordia myxa fruit extract (CMFE) as an antimicrobial agent for wound dressing. Several characteristics, including morphological, physicomechanical, and mechanical characteristics, surface wettability, antibacterial activity, cell viability, and in vitro drug release, were investigated. The inclusion of CMFE in PCL/CH led to increased swelling capability and maximum weight loss. The SEM images of the PCL/CH/CMFE mat showed a uniform topology free of beads and an average fiber diameter of 195.378 nm. Excellent antimicrobial activity was shown towards Escherichia coli (31.34 ± 0.42 mm), Salmonella enterica (30.27 ± 0.57 mm), Staphylococcus aureus (21.31 ± 0.17 mm), Bacillus subtilis (27.53 ± 1.53 mm), and Pseudomonas aeruginosa (22.17 ± 0.12 mm) based on the inhibition zone assay. The sample containing 5 wt% CMFE had a lower water contact angle (47 ± 3.7°), high porosity, and high swelling compared to the neat mat. The release of the 5% CMFE-loaded mat was proven to be based on anomalous non-Fickian diffusion using the Korsmeyer–Peppas model. Compared to the pure PCL membrane, the PCL-CH/CMFE membrane exhibited suitable cytocompatibility on L929 cells. In conclusion, the fabricated antimicrobial nanofibrous films demonstrated high bioavailability, with suitable properties that can be used in wound dressings.
This experiment evaluated the impact of the dietary addition of 1,3-β-glucans (GLU) on broiler chickens’ growth, intestinal histology, blood biochemical parameters, and immunity. Two hundred three-day-old male broilers (Ross 308) (97.93 ± 0.19 g/chick) were randomly assigned into four treatments with five replicates, each containing ten birds, in a complete randomized design. The four treatments were formulated with 0, 50, 100, and 150 mg 1,3-β-glucans kg−1 in broiler chicken diets. During the study, no significant impacts (p > 0.05) were observed in weight gain and feed conversion ratio (FCR) between treatment groups. Based on the results of total body weight gain and FCR, the optimal level of 1,3-β-glucan is 120 mg Kg−1. The intestinal histomorphology was improved by GLU supplementation, as indicated by increased villi height and villi height to crypt depth ratio (p < 0.01). All levels of supplemental β-1,3 glucan decreased the serum total cholesterol (TC), triglyceride levels, and low-density lipoprotein cholesterol (LDL-C) (p < 0.05). The serum levels of growth hormones (GH), triiodothyronine (T3), and thyroxine (T4) were increased in GLU-supplemented groups (p < 0.05). The serum immune indices (lysozyme activity, interleukin 10 (IL10), complement 3 (C3), and total protein levels) were increased in the GLU-supplemented groups (p < 0.05). Dietary GLU up-regulated the immunoexpression of CD3 (T-cell marker) and CD20 (B-cell marker) in the spleen of birds (p < 0.01). It can be concluded that 1,3-β-glucan can be added to broiler chicken diets for improving the development and integrity of the intestine and enhancing the bird’s immune status. The optimal level for 1,3-β-glucan dietary supplementation was 120 mg Kg−1. Dietary 1,3-β-glucan has a hypolipidemic effect and improves the hormonal profile of birds without affecting their growth rate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.