Flaky graphene oxide (GO) nanoparticles (NPs) were synthesized using Hummer’s method and then capped with polyethylene glycol (PEG) by an esterification reaction, then loaded with Nigella sativa (N. sativa) seed extract. Aiming to investigate their potential use as a smart drug delivery system against Staphylococcus aureus and Escherichia coli, the spectral and structural characteristics of GO-PEG NPs were comprehensively analyzed by XRD, AFM, TEM, FTIR, and UV- Vis. XRD patterns revealed that GO-PEG had different crystalline structures and defects, as well as a higher interlayer spacing. AFM results showed GONPs with the main grain size of 24.41 nm, while GONPs–PEG revealed graphene oxide aggregation with the main grain size of 287.04 nm after loading N. sativa seed extract, which was verified by TEM examination. A strong OH bond appeared in FTIR spectra. Furthermore, UV- Vis absorbance peaks at (275, 284, 324, and 327) nm seemed to be correlated with GONPs, GO–PEG, N. sativa seed extract, and GO –PEG- N. sativa extract. The drug delivery system was observed to destroy the bacteria by permeating the bacterial nucleic acid and cytoplasmic membrane, resulting in the loss of cell wall integrity, nucleic acid damage, and increased cell-wall permeability.
This research aims to investigate the synthesis, characterization, and evaluation of the biocompatibility and antibacterial activity of novel zinc oxide (ZnO) nanoparticles (NPs) prepared by Punica granatum peel and coffee ground extracts as the reducing and capping agents. Chemically synthesized ZnONPs were prepared using zinc acetate dihydrate and sodium hydroxide as reducing precursors. ZnONPs were characterized using an ultraviolet-visible spectrophotometer (UV-VIS), X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM), and Fourier transform infrared (FTIR) spectroscopy. Peaks of UV spectra were 300 nm for ZnONPs_PPE, 320 nm (ZnONPs_CE), 290 nm, and 440 nm (ZnONP_Chem), thereby confirming ZnONPs formation. The X-ray diffractograms revealed their hexagonal structure. TEM micrographs of the biosynthesized ZnONPs revealed their hexagonal pattern and nanorod shape for ZnONPs_Chem with particle sizes of 118.6 nm, 115.7 nm, and 111.2 nm, respectively. The FTIR analysis demonstrated the presence of proteins, carboxyl, and hydroxyl groups on ZnONPs surfaces that act as reducing and stabilizing agents. ZnONP_Chem shows the antibacterial effect on Staphylococcus aureus, Enterobacter aerogenes, Pseudomonas aeruginosa, and Klebsiella pneumoniae. Punica peel and coffee ground extracts are effective reducing agents for green ZnONPs synthesis with a lower cytotoxic effect on Vero cells than ZnONPs_Chem with IC50 = 111, 103, and 93 μg/mL, respectively.
Compared to traditional physical and chemical approaches, nanobiotechnology and plant-based green synthesis procedures offer significant advantages, as well as having a greater range of medical and biotechnological applications. Nanoparticles of zinc oxide (ZnO NPs) have recently been recognized as a promising option for many industries, including optics, electrics, packaged foods, and medicine, due to their biocompatibility, low cytotoxicity, and cost-effectiveness. Several studies have shown that zinc ions are important in triggering cell apoptosis by promoting the generation of reactive oxygen species (ROSs) and releasing zinc ions (Zn2+), which are toxic to cells. The toxic nature of the chemicals used in the synthesis of ZnO nanoparticles limits their clinical utility. An overview of recent developments in green ZnO NP synthesis is presented in this review, emphasizing plant parts as reducing agents and their medical applications, including their antimicrobial, anticancer, antioxidant, and anti-inflammatory properties, as well as key mechanisms of action for these applications to facilitate further research on the biomedical fields in the future.
Nanoparticles of gold with zinc oxide (Au@ZnO NPs) were prepared by laser ablation and then capped with curcumin nanoparticles (Cur-Au@ZnO NPs). The synthesized NPs were characterized using different techniques, including transmission electron microscopy (TEM), Fourier-transform infrared spectroscopy (FTIR), UV-visible spectroscopy, and X-ray diffraction. In addition, the ability of NPs as a promising antibacterial agent was tested against Staphylococcus aureus through the agar well diffusion method and AO/EtBr staining assay. The results showed that the prepared nanoparticles (Cur-Au@ZnO) served as an antibacterial agent and can destroy the bacterial cells by losing the cell wall integrity and penetrating the cytoplasmic membrane. Moreover, the findings confirmed the role of the formed NPs in attenuation of the adherence and invasion of S. aureus to rat embryonic fibroblast (REF) cells. Furthermore, the activity of Cur-Au@ZnO NPs against the S. aureus α-hemolysin toxin was evaluated using the western blot technique, using human alveolar epithelial cells (A549), and through histopathology examination in a mouse model. In conclusion, the built Cur-Au@ZnO NPs can be used as a potential antibacterial agent and an inhibitor of α-hemolysin toxin secreted by S. aureus. These NPs may offer a new strategy in combating pathogen infections and in the future for biomedical and pharmaceutical applications.
Green nanoparticle synthesis is an environmentally friendly approach that uses natural solvents. It is preferred over chemical and physical techniques due to the time and energy savings. This study aimed to synthesize zinc oxide nanoparticles (ZnO NPs) through a green method that used Phlomis leaf extract as an effective reducing agent. The synthesis and characterization of ZnO NPs were confirmed by UV-Vis spectrophotometry, Fourier Transform Infrared Spectroscopy (FTIR), X-Ray Diffraction (XRD), Dynamic light scattering (DLS), Zeta potential, and Field Emission Scanning Electron Microscope (FESEM) techniques. In vitro cytotoxicity was determined in L929 normal fibroblast cells using MTT assay. The antibacterial activity of ZnO nanoparticles was investigated using a disk-diffusion method against S. aureus and E. coli, as well as minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) content concentrations. XRD results confirmed the nanoparticles’ crystalline structure. Nanoparticle sizes were found to be around 79 nm by FESEM, whereas the hydrodynamic radius of nanoparticles was estimated to be around 165 3 nm by DLS. FTIR spectra revealed the formation of ZnO bonding and surfactant molecule adsorption on the surface of ZnO NPs. It is interesting to observe that aqueous extracts of phlomis leave plant are efficient reducing agents for green synthesis of ZnO NPs in vitro, with no cytotoxic effect on L929 normal cells and a significant impact on the bacteria tested.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.