Hepatitis B viral (HBV) infections represent major public health problem and are an occupational hazard for healthcare workers. Current alum-adjuvanted HBV vaccine is the most effective measure to prevent HBV infection. However, the vaccine has some limitations including poor response in some vaccinee and being a frost-sensitive suspension. The goal of our study was to use an alternative natural adjuvant system strongly immunogenic allowing for a reduction in dose and cost. We tested HBV surface antigen (HBsAg) adjuvanted with chitosan (Ch) and sodium alginate (S), both natural adjuvants, either alone or combined with alum in mouse model. Mice groups were immunized subcutaneously with HBsAg adjuvanted with Ch or S, or triple adjuvant formula with alum (Al), Ch, and S, or double formulations with AlCh or AlS. These were compared to control groups immunized with current vaccine formula or unadjuvanted HBsAg. We evaluated the rate of seroconversion, serum HBsAg antibody, IL-4, and IFN-γ levels. The results showed that the solution formula with Ch or S exhibited comparable immunogenic responses to Al-adjuvanted suspension. The AlChS gave significantly higher immunogenic response compared to controls. Collectively, our results indicated that Ch and S are effective HBV adjuvants offering natural alternatives, potentially reducing dose.
Measles virus considers an important cause of child morbidity and mortality in some areas as Africa. Ribavirin's activity as a nucleoside analog can disclose the surprisingly broad spectrum action against several RNA viruses under laboratory cell culture conditions. The Current study aimed to investigate the antiviral activity of ribavirin Nano gold particles (AuNPs) against measles virus on vero cell line. Ribavirin- AuNPs was prepared, characterization and the cytotoxicity of ribavirin, AuNPs and ribavirin -AuNPs were tested on vero cells using MTT assay. Antiviral activiry of ribavirin, AuNPs and ribavirin- AuNPswere determined on vero cells using simultaneous, pre-infection and post-infection protocols. Results indicated safety of ribavirin and ribavirin-AuNPs on vero cells, there was a reduction by 78.1% when vero cells treated with ribavirin -AuNPs at 99.5µg/ml while, the viral reduction was 25.4% when ribavirin 500 µg /ml was used for the same viral concentration. Our results concluded that ribavirin - AuNPs had a higher antiviral activity with lower dose than ribavirin alone and the maximal activity showed when it used after the virus infection.
Background Rift Valley Fever Virus (RVFV) is an arbovirus, a zoonotic disease that resurfaces as a potential hazard beyond geographic boundaries. Fever that can proceed to encephalitis, retinitis, hemorrhagic fever, and death is the main manifestation observed in human infections. RVFV has no authorized medication. The RNA interference (RNAi) gene silencing pathway is extremely well conserved. By targeting specific genes, small interfering RNA (siRNA) can be used to suppress viral replication. The aim of this study was to design specific siRNAs against RVFV and evaluate their prophylactic and antiviral effects on the Vero cells. Methods and results Various siRNAs were designed using different bioinformatics tools. Three unique candidates were tested against an Egyptian sheep cell culture-adapted strain BSL-2 that suppressed RVFV N mRNA expression. SiRNAs were transfected a day before RVFV infection (pre-transfection), and 1 h after the viral infection (post-transfection), and were evaluated to detect the silencing activity and gene expression decrease using real-time PCR and a TCID50 endpoint test. The degree of N protein expression was determined by western blot 48 h after viral infection. D2 which targets the (488–506 nucleotides), the middle region of RVFV N mRNA was the most effective siRNA at 30 nM concentration, it almost eliminates N mRNA expression when utilized as antiviral or preventive therapy. siRNAs had a stronger antiviral silencing impact when they were post-transfected into Vero cells. Conclusion Pre and post-transfection of siRNAs significantly reduced RVFV titer in cell lines, offering novel and potentially effective anti-RVFV epidemics and epizootics therapy.
Rift Valley Fever Virus (RVFV) is an arbovirus, zoonotic pathogen that repeatedly reinvigorates with a possible threat across geographic borders. There are no authorized drugs for RVFV. RNA interference gene silencing pathway is a highly conserved mechanism. Specific and different small interfering RNAs (siRNA) have been designed against RVFV Nucleoprotein genes by different bioinformatics tools to investigate their antiviral potentialities in the Vero cell line. Real-time PCR besides Endpoint assay was used to determine the silencing activity of siRNA and reduction in gene expression as all designed siRNAs abrogate mRNA replication by more than 90% by RT-PCR and significant inhibition in RVFV replication in cell line when used as antiviral as well prophylactic therapeutics. Western blot analysis was utilized for protein abundance detection after 48 hours. Consequently, specific siRNA can inhibit RVFV replication in a cell-based assay, introducing novel and promising RVFV epidemics and epizootics therapeutics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.