Group A streptococci (GAS) may engage different sets of virulence strategies, depending on the site of infection and host context. We previously isolated 2 phenotypic variants of a globally disseminated M1T1 GAS clone: a virulent wild-type (WT) strain, characterized by a SpeB(+)/SpeA(-)/Sda1(low) phenotype, and a hypervirulent animal-passaged (AP) strain, better adapted to survive in vivo, with a SpeB(-)/SpeA(+)/Sda1(high) phenotype. This AP strain arises in vivo due to the selection of bacteria with mutations in covS, the sensor part of a key 2-component regulatory system, CovR/S. To determine whether covS mutations explain the hypervirulence of the AP strain, we deleted covS from WT bacteria (DeltaCovS) and were able to simulate the hypervirulence and gene expression phenotype of naturally selected AP bacteria. Correction of the covS mutation in AP bacteria reverted them back to the WT phenotype. Our data confirm that covS plays a direct role in regulating GAS virulence.
Antibiotics are often prescribed in acne treatment; however, Propionibacterium acnes and Staphylococcus epidermidis, the two of the major acne-associated bacteria, developed antibiotic resistance. Essential oils (EOs) present a natural, safe, efficacious and multifunctional alternative treatment. This study aimed to assess the potential anti-acne activity of selected seven EOs commonly used in Mediterranean folk medicine. Antimicrobial activity screening of these oils showed oregano to exhibit the strongest antimicrobial activity with minimum inhibitory concentration (MIC) of 0.34 mg/mL and minimum bactericidal concentration (MBC) of 0.67 mg/mL against P. acnes; and MIC of 0.67 mg/mL and MBC of 1.34 mg/mL against S. epidermidis. The composition of the most effective EOs (oregano and thyme) was determined using gas chromatography-mass spectrometry (GC-MS). Monoterpenoid phenols predominated oregano and thyme EO with thymol percentile 99 and 72, respectively. Thymol showed MIC 0.70 mg/mL against both P. acnes and S. epidermidis whereas MBC was 1.40 and 2.80 mg/mL against P. acnes and S. epidermidis, respectively. Moreover, oregano exhibited the strongest anti-biofilm effect against S. epidermidis with MBIC 1.34 mg/mL and killing dynamic time of 12 and 8 h against P. acnes and S. epidermidis, respectively. Oregano, the most effective EO, was formulated and tested as a nanoemulsion in an acne animal mouse model. The formulation showed superior healing and antimicrobial effects compared to the reference antibiotic. Collectively, our data suggested that oregano oil nanoemulsion is a potential natural and effective alternative for treating acne and overcoming the emerging antibiotic resistance.
Striking individual differences in severity of group A streptococcal (GAS) sepsis have been noted, even among patients infected with the same bacterial strain. We had provided evidence that HLA class II allelic variation contributes significantly to differences in systemic disease severity by modulating host responses to streptococcal superantigens. Inasmuch as the bacteria produce additional virulence factors that participate in the pathogenesis of this complex disease, we sought to identify additional gene networks modulating GAS sepsis. Accordingly, we applied a systems genetics approach using a panel of advanced recombinant inbred mice. By analyzing disease phenotypes in the context of mice genotypes we identified a highly significant quantitative trait locus (QTL) on Chromosome 2 between 22 and 34 Mb that strongly predicts disease severity, accounting for 25%–30% of variance. This QTL harbors several polymorphic genes known to regulate immune responses to bacterial infections. We evaluated candidate genes within this QTL using multiple parameters that included linkage, gene ontology, variation in gene expression, cocitation networks, and biological relevance, and identified interleukin1 alpha and prostaglandin E synthases pathways as key networks involved in modulating GAS sepsis severity. The association of GAS sepsis with multiple pathways underscores the complexity of traits modulating GAS sepsis and provides a powerful approach for analyzing interactive traits affecting outcomes of other infectious diseases.
Variation in responses to pathogens is influenced by exposure history, environment and the host's genetic status. We recently demonstrated that human leukocyte antigen class II allelic differences are a major determinant of the severity of invasive group A streptococcal (GAS) sepsis in humans. While in-depth controlled molecular studies on populations of genetically wellcharacterized humans are not feasible, it is now possible to exploit genetically diverse panels of recombinant inbred BXD mice to define genetic and environmental risk factors. Our goal in this study was to standardize the model and identify genetic and nongenetic covariates influencing invasive infection outcomes. Despite having common ancestors, the various BXD strains (n strains ¼ 33, n individuals ¼ 445) showed marked differences in survival. Mice from all strains developed bacteremia but exhibited considerable differences in disease severity, bacterial dissemination and mortality rates. Bacteremia and survival showed the expected negative correlation. Among nongenetic factors, age -but not sex or weight -was a significant predictor of survival (P ¼ 0.0005). To minimize nongenetic variability, we limited further analyses to mice aged 40-120 days and calculated a corrected relative survival index that reflects the number of days an animal survived post-infection normalized to all significant covariates. Genetic background (strain) was the most significant factor determining susceptibility (Pp0.0001), thus underscoring the strong effect of host genetic variation in determining susceptibility to severe GAS sepsis. This model offers powerful unbiased forward genetics to map specific quantitative trait loci and networks of pathways modulating the severity of GAS sepsis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.