Autism spectrum disorder (ASD) affects about 1% of the world's population. Vitamin D is thought to be essential for normal brain development and modulation of the immune system. Worldwide about 1 billion people are affected by vitamin D deficiency. High-sensitivity C-reactive protein (hs-CRP), cytochrome P450 2E1 (CYP2E1) and 8-hydroxy-2'-deoxyguanosine (8-OH-dG) are biomarkers related to inflammation and oxidative stress. In the present study, these biomarkers were together with serum 25-hydroxyvitamin D (25(OH)D) analyzed in 28 (mean age seven years) Saudi male patients with ASD. The study was conducted to determine if there is any relationship between vitamin D levels, the tested biomarkers and the presence and severity of ASD. The hope was to identify if these biomarkers may be useful for early ASD diagnosis. The Childhood Autism Rating Scale (CARS) and the Social Responsiveness Scale (SRS) were used to measure autism severity. The results of the ASD children were compared with 27 age and gender-matched neurotypical controls. The data indicated that Saudi patients with ASD have significantly lower plasma levels of 25(OH)D than neurotypical controls (38 ng/ml compared to 56 ng/ml, respectively; [P = 0.001]). Surprisingly, the levels of CYP2E1 were lower in the children with ASD than the neurotypical controls (0.48 ± 0.08 vs. 69 ± 0.07 ng/ml, respectively; P = 0.001). The ASD children also had significantly higher levels of hs-CRP (0.79 ± 0.09 vs. 0.59 ± 0.09 ng/ml, respectively; P = 0.001) and 8-OH-dG (8.17 ± 1.04 vs. 4.13 ± 1.01 ng/ml, respectively; P = 0.001, compared to neurotypical age and gender-matched controls. The values for hs-CRP and 8-OH-dG did not correlate [P < 0.001] with autism severity. There was found a relationship between autism severity on the CARS scale and the levels of 25(OH)D and CYP1B1. But this was not found for SRS. All four biomarkers seemed to have good sensitivity and specificity, but the sample size of the present study was too small to determine clinical usefulness. The findings also indicate that inadequate levels of vitamin D play a role in the etiology and severity of autism. Furthermore, the results of the present study suggest the possibility of using 25(OH)D, CYP1B1, hs-CRP and 8-OH-dG, preferably in combination, as biomarkers for the early diagnosis of ASD. However, further research is needed to evaluate this hypothesis.
HypothesisA healthy gut with normal intestinal microflora is completely disrupted by oral antibiotics. The byproducts of harmful gut bacteria can interfere with brain development and may contribute to autism. Strategies to improve the gut microflora profile through dietary modification may help to alleviate gut disorders in autistic patients.MethodSixty young male western albino rats were divided into six equal groups. The first group served as the control; the second group was given an oral neurotoxic dose of propionic (PPA) (250 mg/kg body weight/day) for three days. The third group received an orogastric dose of ampicillin (50 mg/kg for three weeks) with a standard diet. Groups 4, 5 and 6 were given an orogastric dose of ampicillin and fed high-carbohydrate, high-protein and high-lipid diets, respectively, for 10 weeks. Biochemical parameters related to oxidative stress were investigated in brain homogenates from each group.ResultThe microbiology results revealed descriptive changes in the fecal microbiota of rats treated with ampicillin either alone or with the three dietary regimens. The results of PPA acid and ampicillin treatment showed significant increases in lipid peroxidation and catalase with decreases in glutathione and potassium compared with levels in the control group. A protein-rich diet was effective at restoring the glutathione level, while the carbohydrate-rich diet recovered lipid peroxidation and catalase activity. In addition, the three dietary regimens significantly increase the potassium level in the brain tissue of the test animals. Lactate dehydrogenase was remarkably elevated in all groups relative to the control. No outstanding effects were observed in glutathione S-transferase and creatine kinase.ConclusionThe changes observed in the measured parameters reflect the neurotoxic effects of PPA and ampicillin. Lipid peroxide and catalase activity and the levels of glutathione and potassium are satisfactory biomarkers of PPA and ampicillin neurotoxicity. Based on the effects of the three dietary regimens, a balanced diet can protect against PPA or ampicillin-induced neurotoxicity that might induce autistic traits. These outcomes will help efforts directed at controlling the prevalence of autism, a disorder that has recently been associated with PPA neurotoxicity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.