Light is an important factor for the growth of many forms of life, including mushrooms. This paper highlights the effects of the different wavelengths (red, 650 nm; blue, 450 nm; green, 525 nm) of light emitting diodes (LEDs) on the growth, biomass production and antioxidant properties of Ganoderma lucidum. G. lucidum is a white-rot, wood-degrading fungus in the Basiodiomycota that typically grows on logs. Mycelia were grown on coconut water agar (CWA) solid media for analysis of mycelial colony diameter as well as coconut water (CW) submerged culture for analysis of mycelial biomass weight. Both set-ups were incubated in variously-colored LED chambers. The DPPH radical scavenging activity and total phenolic content of the harvested mycelia were also determined. After three days of incubation, G. lucidum mycelia under red LED recorded the highest mean mycelial colony diameter of 72.50 mm. In terms of mycelia biomass production, G. lucidum mycelia exposed in red LED and dark produced the heaviest weight. On the other hand, mycelia grown under green LED had the highest radical scavenging activity of 66.49% while those harvested from red LED showed the highest total phenolic content of 81.29 mg GAE / g of sample. Our results demonstrate that LED color influences the mycelial growth, biomass production and antioxidant activities of G. lucidum.
Light is an important factor for the growth of many forms of life, including mushrooms. This paper highlights the effects of the different wavelengths (red, 650 nm; blue, 450 nm; green, 525 nm) of light emitting diodes (LEDs) on the growth, biomass production and antioxidant properties of Ganoderma lucidum. G. lucidum is a white-rot, wood-degrading fungus in the Basiodiomycota that typically grows on logs. Mycelia were grown on coconut water agar (CWA) solid media for analysis of mycelial colony diameter as well as coconut water (CW) submerged culture for analysis of mycelial biomass weight. Both set-ups were incubated in variously-colored LED chambers. The DPPH radical scavenging activity and total phenolic content of the harvested mycelia were also determined. After three days of incubation, G. lucidum mycelia under red LED recorded the highest mean mycelial colony diameter of 72.50 mm. In terms of mycelia biomass production, G. lucidum mycelia exposed in red LED and dark produced the heaviest weight. On the other hand, mycelia grown under green LED had the highest radical scavenging activity of 66.49% while those harvested from red LED showed the highest total phenolic content of 81.29 mg GAE / g of sample. Our results demonstrate that LED color influences the mycelial growth, biomass production and antioxidant activities of G. lucidum.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.