In order to understand the role of cytosolic antioxidant enzymes in drought stress protection, transgenic tobacco (Nicotiana tabacum cv. Xanthi) plants overexpressing cytosolic Cu/Zn-superoxide dismutase (cytsod) (EC 1.15.1.1) or ascorbate peroxidase (cytapx) (EC 1.11.1.1) alone, or in combination, were produced and tested for tolerance against mild water stress. The results showed that the simultaneous overexpression of Cu/Znsod and apx or at least apx in the cytosol of transgenic tobacco plants alleviates, to some extent, the damage produced by water stress conditions. This was correlated with higher water use efficiency and better photosynthetic rates. In general, oxidative stress parameters, such as lipid peroxidation, electrolyte leakage, and H(2)O(2) levels, were higher in non-transformed plants than in transgenic lines, suggesting that, at the least, overexpression of cytapx protects tobacco membranes from water stress. In these conditions, the activity of other antioxidant enzymes was induced in transgenic lines at the subcellular level. Moreover, an increase in the activity of some antioxidant enzymes was also observed in the chloroplast of transgenic plants overexpressing cytsod and/or cytapx. These results suggest the positive influence of cytosolic antioxidant metabolism on the chloroplast and underline the complexity of the regulation network of plant antioxidant defences during drought stress.
The rapid generation of H(2)O(2) by Cd(2+)-treated plant cells was investigated in cultured tobacco (Nicotiana tabacum L.) BY-2 cells. The starting point for the generation of H(2)O(2) has been located at the cell plasma membrane using cytochemical methods. Treatment of the cells with diphenyleneiodonium (DPI) and imidazol, both inhibitors of the neutrophil NADPH oxidase, prevented the generation of H(2)O(2) induced by Cd(2+). These data suggest the involvement of an NADPH oxidase-like enzyme leading to H(2)O(2) production through O(2)(*-) dismutation by superoxide dismutase enzymes. To investigate the implication of Ca(2+) channels in a Cd(2+)-induced oxidative burst, different inhibitors of Ca(2+) channels were used. Only La(3+) totally inhibited the generation of H(2)O(2) induced by Cd(2+). However, verapamil and nifedipine, inhibitors of Ca(2+) channels, were not effective. Calmodulin or a Ca(2+)-dependent protein kinase is also implicated in the signal transduction sequence, based on the results obtained with two types of calmodulin antagonists, fluphenazine and N-(-6-amino-hexyl)-5-chloro-1-naphthalenesulphonamide (W-7) and staurosporine, an inhibitor of protein kinases. However, neomycin, an inhibitor of the phosphoinositide cycle, did not inhibit the generation of H(2)O(2) induced by Cd(2+), suggesting mainly an induction of the oxidative burst mediated by calmodulin and/or calmodulin-dependent proteins.
The physiology of hyperhydricity in relation to oxidative stress, mineral nutrients, antioxidant enzymes and ethylene has been studied in three micropropagated carnation cultivars under experimentally induced hyperhydricity. A marked increase in Fe content in comparison with normal tissues was observed in the hyperhydric tissues from the three cultivars. The levels of ethylene, solute leakage and malondialdehyde content were also significantly higher in the hyperhydric tissues. In relation to the time course of H(2)O(2) production measured by fluorescence quenching, a similar trend could be observed for the three cultivars, with a clear increase in the generation of hydrogen peroxide in hyperhydric tissues. The activities of all the antioxidative enzymes studied, except lipoxygenase, were higher in the hyperhydric shoots. Phenylalanine ammonia-lyase (PAL) showed a significant decrease in activity in the hyperhydric tissues in comparison with the controls for the three cultivars. Soluble guaiacol peroxidase had a strong increase in activity in hyperhydric shoots of the three cultivars. These results provide, for the first time, direct evidence of H(2)O(2) generation in hyperhydric tissues, characterize the response of the antioxidant system to an oxidative stress during hyperhydricity in carnation leaves and point to the accumulation of toxic forms of oxygen as the inducer of some of the abnormalities observed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.