Mussel farming has been suggested as a low-cost option for reducing nutrient content in eutrophied waters. This study examines whether mussel farming contributes to reductions in total nutrient abatement cost and increases in equity for achieving nutrient load reduction targets to the Baltic Sea under different international policy regimes (cost-effective, country targets set by the Baltic Sea Action Plan (BSAP), and nutrient-trading markets). A cost-minimizing model is used to calculate the cost savings, and the analytical results show that mussel farming is a cost-effective option only when the marginal abatement cost is lower than for other abatement measures. The numerical cost-minimizing model of the Baltic Sea indicates that the largest abatement cost reductions from introduction mussel farming, approximately 3.5 billion SEK (9.36 SEK = 1 Euro), are obtained under the cost-effective and nutrient-trading systems. Equity, as measured by abatement cost in relation to affordability in terms of gross domestic product, is improved by mussel farming under the cost-effective regime but reduced under the BSAP country targets and nutrient-trading regimes.
Carbon sequestration is suggested as a low-cost option for climate change mitigation, the functioning of which can be threatened by pathogen infestation. This study calculates the effects of infectious pathogens on the cost of achieving the EU’s 2050 climate targets by combining the so-called production function method with the replacement cost method. Pathogens are then assumed to affect carbon sink enhancement through the impact on productivity of forest land, and carbon sequestration is valued as the replacement for costly reductions in emissions from fossil fuels for reaching the EU’s 2050 climate targets. To this end, we have constructed a numerical dynamic optimization model with a logistic forest growth function, a simple allometric representation of the spread of pathogens in forests, and reductions in emissions from fossil fuels. The results show that the annual value of forest carbon sequestration ranges between approximately 6.4 and 14.9 billion Euros, depending on the impact and dispersal of pathogens. Relatively large values are obtained for countries with large emissions from fossil fuels, e.g., Germany, France, Spain and Italy, which also face costs of pathogen together with countries with large forest area, such as Romania.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.