We investigate the dynamics of BPS vortices in the presence of magnetic impurities taking the form of axially-symmetric localised lumps and delta-functions. We present numerical results for vortices on flat space, as well as exact results for vortices on hyperbolic space in the presence of delta-function impurities. In fact, delta-function impurities of appropriate strength can be captured within the moduli space approximation by keeping one or more of the vortices fixed. We also show that previous work on vortices on the 2-sphere extends naturally to the inclusion of delta-function impurities.
Harmonic maps that minimise the Dirichlet energy in their homotopy classes are known as lumps. Lump solutions on real projective space are explicitly given by rational maps subject to a certain symmetry requirement. This has consequences for the behaviour of lumps and their symmetries. An interesting feature is that the moduli space of charge three lumps is a 7-dimensional manifold of cohomogeneity one which can be described as a one-parameter family of symmetry orbits of D 2 symmetric maps. In this paper, we discuss the charge three moduli spaces of lumps from two perspectives: discrete symmetries of lumps and the Riemann-Hurwitz formula. We then calculate the metric and find explicit formulas for various geometric quantities. We also discuss the implications for lump decay.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.