Background The marine environment hosts a wide variety of species that have evolved to live in harsh and challenging conditions. Marine organisms are the focus of interest due to their capacity to produce biotechnologically useful compounds. They are promising biocatalysts for new and sustainable industrial processes because of their resistance to temperature, pH, salt, and contaminants, representing an opportunity for several biotechnological applications. Encouraged by the extensive and richness of the marine environment, marine organisms’ role in developing new therapeutic benefits is heading as an arable field. Main body of the abstract There is currently much interest in biologically active compounds derived from natural resources, especially compounds that can efficiently act on molecular targets, which are involved in various diseases. Studies are focused on bacteria and fungi, isolated from sediments, seawater, fish, algae, and most marine invertebrates such as sponges, mollusks, tunicates, coelenterates, and crustaceans. In addition to marine macro-organisms, such as sponges, algae, or corals, marine bacteria and fungi have been shown to produce novel secondary metabolites (SMs) with specific and intricate chemical structures that may hold the key to the production of novel drugs or leads. The marine environment is known as a rich source of chemical structures with numerous beneficial health effects. Presently, several lines of studies have provided insight into biological activities and neuroprotective effects of marine algae, including antioxidant, anti-neuroinflammatory, cholinesterase inhibitory activity, and neuronal death inhibition. Conclusion The application of marine-derived bioactive compounds has gained importance because of their therapeutic uses in several diseases. Marine natural products (MNPs) display various pharmaceutically significant bioactivities, including antibiotic, antiviral, neurodegenerative, anticancer, or anti-inflammatory properties. The present review focuses on the importance of critical marine bioactive compounds and their role in different diseases and highlights their possible contribution to humanity.
: Implantable microfluidic devices are milestones in developing devices that can either measure parameters like ocular pressure and blood glucose level or deliver various components for therapeutic needs or behavioral modification. Researchers are currently focusing on the miniaturization of almost all its tools for a better healthcare platform. Implantable microfluidic devices are a combination of various systems including, but not limited to, microfluidic platforms, reservoirs, sensors, and actuators, implanted inside the body of a living entity (in vivo) with the purpose of directly or indirectly helping the entity. It is a multidisciplinary approach with immense potential in the area of the biomedical field. Significant resources are utilizing on for the research and development of these devices for various applications. The induction of an implantable microfluidic device into an animal would enable us to measure the responses without any repeated invasive procedures. Such data would help in the development of a better drug delivery profile. Implantable microfluidic devices with reservoirs deliver specific chemical or biological products to treat situations like cancers and diabetes. They can also deliver fluorophores for specific imaging inside the body. Implantable microfluidic devices help provide a microenvironment for various cell differentiation procedure. These devices know no boundaries, and this article reviews these devices based on their design and applications.
No abstract
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.