Avalanche photodiodes (APDs) are essential components in quantum key distribution systems and active imaging systems requiring both ultrafast response time to measure photon time of flight and high gain to detect low photon flux. The internal gain of an APD can improve system signal-to-noise ratio (SNR). Excess noise is typically kept low through the selection of material with intrinsically low excess noise, using separate-absorption-multiplication (SAM) heterostructures, or taking advantage of the dead-space effect using thin multiplication regions. In this work we demonstrate the first measurement of excess noise and gain-bandwidth product in III–V nanopillars exhibiting substantially lower excess noise factors compared to bulk and gain-bandwidth products greater than 200 GHz. The nanopillar optical antenna avalanche detector (NOAAD) architecture is utilized for spatially separating the absorption region from the avalanche region via the NOA resulting in single carrier injection without the use of a traditional SAM heterostructure.
Positron emission tomography and magnetic resonance imaging (PET/MRI) scanners cannot be qualified in the manner adopted for hybrid PET and computed tomography (CT) devices. The main hurdle with qualification in PET/MRI is that attenuation correction (AC) cannot be adequately measured in conventional PET phantoms due to the difficulty in converting the MRI images of the physical structures (e.g., plastic) into electron density maps. Over the last decade, a plethora of novel MR-based algorithms have been developed to more accurately derive the attenuation properties of the human head, including the skull. Although very promising, none of these techniques has yet emerged as an optimal and universally adopted strategy for AC in PET/MRI.In this work, we propose a path for PET/MRI qualification for multicenter brain imaging studies. Specifically, our solution is to separate the head attenuation correction from the other factors that affect PET data quantification and use a patient as a phantom to assess the former. The emission data collected on the integrated PET/MRI scanner to be qualified should be reconstructed using both MR-and CT-based AC methods and whole-brain qualitative and quantitative (both voxelwise and regional) analyses should be performed. The MR-based approach will be considered satisfactory if the PET quantification bias is within the acceptance criteria specified herein. We have implemented this approach successfully across two PET/MRI scanner manufacturers at two sites.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.