Infectious disease is a critically important global healthcare issue. In the U.S. alone there are 2 million new cases of hospital-acquired infections annually leading to 90,000 deaths and 5 billion dollars of added healthcare costs. Couple these numbers with the appearance of new antibiotic resistant bacterial strains and the increasing occurrences of community-type outbreaks, and clearly this is an important problem. Our review attempts to bridge the research areas of natural host defense peptides (HDPs), a component of the innate immune system, and biocidal cationic polymers. Recently discovered peptidomimetics and other synthetic mimics of HDPs, that can be short oligomers as well as polymeric macromolecules, provide a unique link between these two areas. An emerging class of these mimics are the facially amphiphilic polymers that aim to emulate the physicochemical properties of HDPs but take advantage of the synthetic ease of polymers. These mimics have been designed with antimicrobial activity and, importantly, selectivity that rivals natural HDPs. In addition to providing some perspective on HDPs, selective mimics, and biocidal polymers, focus is given to the arsenal of biophysical techniques available to study their mode of action and interactions with phospholipid membranes. The issue of lipid type is highlighted and the important role of negative curvature lipids is illustrated. Finally, materials applications (for instance, in the development of permanently antibacterial surfaces) are discussed as this is an important part of controlling the spread of infectious disease.
It has long been recognized that cationic nanoparticles induce cell membrane permeability. Recently, it has been found that cationic nanoparticles induce the formation and/or growth of nanoscale holes in supported lipid bilayers. In this paper we show that non-cytotoxic concentrations of cationic nanoparticles induce 30-2000 pA currents in 293A and KB cells, consistent with a nanoscale defect such as a single hole or group of holes in the cell membrane ranging from 1 to 350 nm 2 in total area. Other forms of nanoscale defects, including the nanoparticle porating agents adsorbing onto or intercalating into the lipid bilayer are also consistent; although the size of the defect must increase to account for any reduction in ion conduction, as compared to a water channel. An individual defect forming event takes 1 -100 ms, while membrane resealing may occur over tens of seconds. Patchclamp data provide direct evidence for the formation of nanoscale defects in living cell membranes. The cationic polymer data are compared and contrasted with patch-clamp data obtained for AMO-3, a small molecule that is proposed to make well-defined 3.4 nm holes in lipid bilayers. Here, we observe data that are consistent with AMO-3 making ~3 nm holes in living cell membranes.
We have investigated how doubly selective synthetic mimics of antimicrobial peptides (SMAMPs), which can differentiate not only between bacteria and mammalian cells, but also between Gram-negative and Gram-positive bacteria, make the latter distinction. By dye-leakage experiments on model vesicles and complementary experiments on bacteria, we were able to relate the Gram selectivity to structural differences of these bacteria types. We showed that the double membrane of E. coli rather than the difference in lipid composition between E. coli and S. aureus was responsible for Gram selectivity. The molecular-weight-dependent antimicrobial activity of the SMAMPs was shown to be a sieving effect: while the 3000 g mol(-1) SMAMP was able to penetrate the peptidoglycan layer of the Gram-positive S. aureus bacteria, the 50000 g mol(-1) SMAMP got stuck and consequently did not have antimicrobial activity.
Antimicrobial peptides (AMPs) are cationic amphiphiles that comprise a key component of innate immunity. Synthetic analogues of AMPs, such as the family of phenylene ethynylene antimicrobial oligomers (AMOs), recently demonstrated broad-spectrum antimicrobial activity, but the underlying molecular mechanism is unknown. Homologues in this family can be inactive, specifically active against bacteria, or nonspecifically active against bacteria and eukaryotic cells. Using synchrotron small-angle X-ray scattering (SAXS), we show that observed antibacterial activity correlates with an AMO-induced topological transition of small unilamellar vesicles into an inverted hexagonal phase, in which hexagonal arrays of 3.4-nm water channels defined by lipid tubes are formed. Polarized and fluorescence microscopy show that AMO-treated giant unilamellar vesicles remain intact, instead of reconstructing into a bulk 3D phase, but are selectively permeable to encapsulated macromolecules that are smaller than 3.4 nm. Moreover, AMOs with different activity profiles require different minimum threshold concentrations of phosphoethanolamine (PE) lipids to reconstruct the membrane. Using ternary membrane vesicles composed of DOPG:DOPE:DOPC with a charge density fixed at typical bacterial values, we find that the inactive AMO cannot generate the inverted hexagonal phase even when DOPE completely replaces DOPC. The specifically active AMO requires a threshold ratio of DOPE:DOPC = 4:1, and the nonspecifically active AMO requires a drastically lower threshold ratio of DOPE:DOPC = 1.5:1. Since most gram-negative bacterial membranes have more PE lipids than do eukaryotic membranes, our results imply that there is a relationship between negative-curvature lipids such as PE and antimicrobial hydrophobicity that contributes to selective antimicrobial activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.