It has long been recognized that cationic nanoparticles induce cell membrane permeability. Recently, it has been found that cationic nanoparticles induce the formation and/or growth of nanoscale holes in supported lipid bilayers. In this paper we show that non-cytotoxic concentrations of cationic nanoparticles induce 30-2000 pA currents in 293A and KB cells, consistent with a nanoscale defect such as a single hole or group of holes in the cell membrane ranging from 1 to 350 nm 2 in total area. Other forms of nanoscale defects, including the nanoparticle porating agents adsorbing onto or intercalating into the lipid bilayer are also consistent; although the size of the defect must increase to account for any reduction in ion conduction, as compared to a water channel. An individual defect forming event takes 1 -100 ms, while membrane resealing may occur over tens of seconds. Patchclamp data provide direct evidence for the formation of nanoscale defects in living cell membranes. The cationic polymer data are compared and contrasted with patch-clamp data obtained for AMO-3, a small molecule that is proposed to make well-defined 3.4 nm holes in lipid bilayers. Here, we observe data that are consistent with AMO-3 making ~3 nm holes in living cell membranes.
Apoptosis is defined by a distinct set of morphological changes observed during cell death including loss of focal adhesions, the formation of cell membrane buds or blebs, and a decrease in total cell volume. Recent studies suggest that these dramatic morphological changes, particularly apoptotic volume decrease (AVD), are an early prerequisite to apoptosis and precede key biochemical time-points. Here we use atomic force microscopy to observe early stage AVD of KB cells undergoing staurosporine-induced apoptosis. After a 3-h exposure to 1 microM staurosporine, a 32% decrease in total cell height and a 50% loss of total cell volume is observed accompanied by only a 15% change in cell diameter. The observed AVD precedes key biochemical hallmarks of apoptosis such as loss of mitochondrial membrane potential, phosphatidyl serine translocation, nuclear fragmentation, and measurable caspase-3 activity. This suggests that morphological volume changes occur very early in the induction of apoptosis.
Carbon nanoprobes were utilized in tapping mode atomic force microscopy investigations to highlight the topographic differences between poly(amidoamine) (PAMAM) dendrimers, two-dimensional arrays of PAMAM dendrimers, and PAMAM core-shell tecto(dendrimers). The PAMAM core-shell tecto(dendrimers) used for this study consist of a shell of generation five (G5) dendrimers covalently linked to a G7 core. The volumes measured for the PAMAM core-shell tecto(dendrimers) suggest a 75-100% saturation of shell G5 dendrimers about the G7 core. This compares favorably with theoretical predictions that 12 G5 dendrimers should pack to form a shell about a G7 core. The effect of different imaging substrates was also explored. Tecto(dendrimers) imaged on hydrophobic surfaces experience a 6-fold increase in maximum peak height and a 3-fold decrease in diameter as compared to those imaged on mica. Measured volume is invariant.
Most students taking general chemistry courses do not intend to pursue careers in chemistry; in fact, they are more likely to end up in positions where they fund, write, or vote for chemical research and policies. Our profession continues to ask how we can teach students scientific reasoning skills and chemical understanding in general chemistry that they are able to take beyond the classroom into their everyday lives. The emerging answer at this university is the studio teaching method, which incorporates the “best teaching and learning practices†recommended by chemical education research within an integrated lecture–lab technology-intensive environment. The design, implementation, and pedagogical rationale of studio general chemistry are described.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.