Microprocessors continue to grow in capabilities, complexity and performance. Microprocessors typically integrate functional components such as logic and level two (L2) cache memory in their architecture. This functional integration of logic and memory results in improved performance of the microprocessor. However, the integration also introduces a layer of complexity in the thermal design and management of microprocessors. As a direct result of functional integration, the power map on a microprocessor is typically highly non-uniform and the assumption of a uniform heat flux across the chip surface has been shown to be invalid post Pentium II architecture. The active side of the die is divided into several functional blocks with distinct power assigned to each functional block. Previous work has been done which includes numerical analysis and thermal Based optimization of a typical package consisting of a non-uniformly powered die, heat spreader, TIM I &II and the base of the heat sink. In this paper, an analytical approach to temperature distribution of a first level package with a non-uniformly powered die is carried out for the first time. The analytical model for two layer bodies developed by Haji-Sheikh et al. is extended to this typical package which is a multilayer body. The solution is to begin by designating each surface heat flux as a volumetric heat source. An inverse methodology will be applied to solve the equations for various surfaces to calculate maximum junction temperature for given multilayer body. Finally validation of the analytical solution will be carried out using developed numerical model.
The convergence of computing and communications dictates building up rather than out. As consumers demand more functions in their hand-held devices, the need for more memory in a limited space is increasing, and integrating various functions into the same package is becoming more crucial. Over the past few years, die stacking has emerged as a powerful tool for satisfying these challenging Integrated Circuit (IC) packaging requirements.Previously, present authors reported on the thermal challenges of various die stacking architectures that included memory (volatile and non-volatile) only. In this paper, the focus is on stacking memory and the logic processor on the same substrate. In present technologies, logic processor and memory packages are located side-by-side on the board or they are packaged separately and then stacked on top of each other (Package-on-package [PoP]). Mixing memory and logic processor in the same stack has advantage and challenges, but requires the integration ability of economies-of-scale. Geometries needed were generated by using Pro/Engineer ® Wildfire ™ 2.0 as a Computer-Aided-Design (CAD) tool and were transferred to ANSYS ® Workbench ™ 10.0, where meshed analysis was conducted. Package architectures evaluated were rotated stack, staggered stack utilizing redistributed pads, and stacking with spacers, while all other parameters were held constant. The values of these parameters were determined to give a junction temperature of 100ºC, which is an unacceptable value due to wafer level electromigration. A discussion is presented in what parameters need to be adjusted in order to meet the required thermal design specification. In that light, a list of solutions consisting of increasing the heat transfer co-efficient on top of the package, the use of underfill, improved thermal conductivity of the PCB, and the use of a copper heat spreader were evaluated. Results were evaluated in the light of market segment requirements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.