Vibrational strong coupling (VSC) has recently been shown to change the rate and chemoselectivity of ground‐state chemical reactions via the formation of light–matter hybrid polaritonic states. However, the observation that vibrational‐mode symmetry has a large influence on charge‐transfer reactions under VSC suggests that symmetry considerations could be used to control other types of chemical selectivity through VSC. Here, we show that VSC influences the stereoselectivity of the thermal electrocyclic ring opening of a cyclobutene derivative, a reaction which follows the Woodward–Hoffmann rules. The direction of the change in stereoselectivity depends on the vibrational mode that is coupled, as do changes in rate and reaction thermodynamics. These results on pericyclic reactions confirm that symmetry plays a key role in chemistry under VSC.
Au(I) in combination
with AgOTf enables the unprecedented direct
and α-stereoselective catalytic synthesis of deoxyglycosides
from glycals. Mechanistic investigations suggest that the reaction
proceeds via Au(I)-catalyzed hydrofunctionalization of the enol ether
glycoside. The room temperature reaction is high yielding and amenable
to a wide range of glycal donors and OH nucleophiles.
Palladium(II) in combination with a monodentate phosphine ligand enables the unprecedented direct and α‐stereoselective catalytic synthesis of deoxyglycosides from glycals. Initial mechanistic studies suggest that in the presence of N‐phenyl‐2‐(di‐tert‐butylphosphino)pyrrole as the ligand, the reaction proceeds via an alkoxy palladium intermediate that increases the proton acidity and oxygen nucleophilicity of the alcohol. The method is demonstrated with a wide range of glycal donors and acceptors, including substrates bearing alkene functionalities.
A practical approach for the α-stereoselective
synthesis
of deoxyglycosides using cooperative Brønsted acid-type organocatalysis
has been developed. The method is tolerant of a wide range of glycoside
donors and acceptors, and its versatility is exemplified in the one-pot
synthesis of a trisaccharide. Mechanistic studies suggest that thiourea-induced
acid amplification of the chiral acid via H-bonding is key for the
enhancement in reaction rate and yield, while stereocontrol is dependent
on the chirality of the acid.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.