Cadmium (Cd) toxicity is highly detrimental for the human and largely originated from faulty industrial and agricultural practices. Cadmium toxicity can be observed in minute concentration and highly mobile in the soil–plant system and availability in soil is mainly governed by various physio-chemical properties of the soil. Cereals and vegetables cultivated in peri-urban areas, former mining and industrial areas accumulate Cd in toxic limit as they receive Cd from multiple ways. In general, when the total cadmium (Cd) concentration in soil exceeds 8 mg kg−1, or the bioavailable Cd concentration becomes >0.001 mg kg−1, or the Cd concentration in plant tissue reaches 3–30 mg kg−1most plants exhibit visible Cd toxicity symptoms. The impacts of Cd toxicity are seed germination, growth, photosynthesis, stomata conductance, enzyme activities and alteration in mineral nutrition. The major source of Cd in human is food chain cycle and causes disorders like “itai-itai” disease, cancer, and nephrotoxicity. Cadmium harms kidney, liver, bone and reproductive body parts and may be fatal in serious condition. WHO recommended the tolerable monthly Cd intake are 25 μg kg−1 body weights and in drinking water Cd concentration should not exceed 3 μg L−1. It is hard to remove these potent and hazardous metals from the environment as they have long mean residence time but, can be converted into less toxic form through bioremediation. This chapter focuses on the effect of Cd toxicity in soil–plant-human continuum and its bioremediation techniques to mitigate the Cd- toxicity.
The salinization of soil is responsible for the reduction in the growth and development of plants. As the global population increases day by day, there is a decrease in the cultivation of farmland due to the salinization of soil, which threatens food security. Salt-affected soils occur all over the world, especially in arid and semi-arid regions. The total area of global salt-affected soil is 1 billion ha, and in India, an area of nearly 6.74 million ha−1 is salt-stressed, out of which 2.95 million ha−1 are saline soil (including coastal) and 3.78 million ha−1 are alkali soil. The rectification and management of salt-stressed soils require specific approaches for sustainable crop production. Remediating salt-affected soil by chemical, physical and biological methods with available resources is recommended for agricultural purposes. Bioremediation is an eco-friendly approach compared to chemical and physical methods. The role of microorganisms has been documented by many workers for the bioremediation of such problematic soils. Halophilic Bacteria, Arbuscular mycorrhizal fungi, Cyanobacteria, plant growth-promoting rhizobacteria and microbial inoculation have been found to be effective for plant growth promotion under salt-stress conditions. The microbial mediated approaches can be adopted for the mitigation of salt-affected soil and help increase crop productivity. A microbial product consisting of beneficial halophiles maintains and enhances the soil health and the yield of the crop in salt-affected soil. This review will focus on the remediation of salt-affected soil by using microorganisms and their mechanisms in the soil and interaction with the plants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.