We report the design and implementation of an affordable bedside device, Neo is capable of acquiring vital data in real time by integrating with diverse devices connected to newborns in neonatal intensive care units (NICUs). NICUs are equipped with multiple vital sign monitoring devices that are connected to the premature newborn and acquire a few gigabytes of data every day. The continuous vital data from these devices are manually documented every hour. This introduces errors and loses a large amount of high-resolution data. The intermittent documentation of physiological data also makes it difficult for clinicians to visualize and detect the trends of diagnostic utility. Neo is built on an affordable Internet of Things platform that aggregates and sends the real-time data to a cloud-based big data platform called integrated NICU. Apart from minimizing documentation errors, the device enables data acquisition at sufficiently real-time rates as to indicate the current status of all the patients at the NICU. Neo automates immediate vital sign status and past trends as graphs or charts that the doctor and nurses can view from anywhere through the Internet. Physiological signal and clinical parameters from Neo is used to score different diseases like sepsis, respiratory distress syndrome, necrotizing enterocolitis, and retinopathy of prematurity. This score predicts the physiological health of the newborn and aid clinicians in decision-making ensuring timely intervention. INDEX TERMS Big data, cloud-based, device aggregator, early warning scores, IoT, neonatal intensive care units.
Limbus-derived stromal/mesenchymal stem cells (LMSCs) are vital for corneal homeostasis and wound healing. However, despite multiple pre-clinical and clinical studies reporting the potency of LMSCs in avoiding inflammation and scarring during corneal wound healing, the molecular basis for the ability of LMSCs remains unknown. This study aimed to uncover the factors and pathways involved in LMSC-mediated corneal wound healing by employing RNA-Sequencing (RNA-Seq) in human LMSCs for the first time. We characterized the cultured LMSCs at the stages of initiation (LMSC−P0) and pure population (LMSC−P3) and subjected them to RNA-Seq to identify the differentially expressed genes (DEGs) in comparison to native limbus and cornea, and scleral tissues. Of the 28,000 genes detected, 7800 DEGs were subjected to pathway-specific enrichment Gene Ontology (GO) analysis. These DEGs were involved in Wnt, TGF-β signaling pathways, and 16 other biological processes, including apoptosis, cell motility, tissue remodeling, and stem cell maintenance, etc. Two hundred fifty-four genes were related to wound healing pathways. COL5A1 (11.81 ± 0.48) and TIMP1 (20.44 ± 0.94) genes were exclusively up-regulated in LMSC−P3. Our findings provide new insights involved in LMSC-mediated corneal wound healing.
The proteostasis network (PN) comprises a plethora of proteins that are dedicated to aid in protein folding; some with over-lapping functions. Despite this, there are multiple pathophysiological states associated with depletion of chaperones. This is counter-intuitive assuming cells have the ability to re-program transcriptional outputs in accordance with its proteostasic limitations. To this effect, we have used S. cerevisiae to understand the route a cell takes as a response when challenged with different proteostasis impairments. Using 14 single deletion strains of genes of Protein Quality Control (PQC) system, we quantify their proteostasis impairment and the transcriptional response. In most cases cellular response was incapable of restoring proteostasis. The response did not activate proteostasis components or pathways that could complement the function of the missing PQC gene. Over-expression of alternate machineries, could restore part of the proteostasis defect in deletion strains. We posit that epistasis guided synthetic biology approaches may be helpful in realizing the true potential of the cellular chaperone machinery.
Protein folding abnormalities are associated with the pathology of many diseases. This is surprising given the plethora of cellular machinery dedicated to aid protein folding. It is thought that cellular response to proteotoxicity is generally sufficient, but may be compromised during pathological conditions. We asked if, in a physiological condition, cells have the ability to re-program transcriptional outputs in accordance with proteostasis demands. We have used S. cerevisiae to understand the response of cells when challenged with different proteostasis impairments, by removing one protein quality control (PQC) gene from the system at a time. Using 14 PQC deletions, we investigated the transcriptional response and find the mutants were unable to upregulate pathways that could complement the function of the missing PQC gene. To our surprise, cells have inherently a limited scope of response that is not optimally tuned; with transcriptomic responses being decorrelated with respect to the sign of their epistasis. We conclude that this non-optimality in proteotoxic response may limit the cellular ability to reroute proteins through alternate and productive machineries resulting in pathological states. We posit that epistasis guided synthetic biology approaches may be helpful in realizing the true potential of the cellular chaperone machinery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.