Ultrasonic vibration-assisted dry grinding is a sustainable hybrid manufacturing technology that decreases the negative environmental impact of coolant, reduces manufacturing costs, and improves surface integrity. The present investigation analyses the mechanisms associated with ultrasonic vibration-assisted dry grinding of AISI D2 tool steel with an alumina grinding wheel. It also compares the influence of traditional dry grinding and traditional wet grinding modes with the ultrasonic vibration-assisted dry grinding mode at different ultrasonic vibration amplitudes. Ultrasonic vibration was applied to the sample in the longitudinal feed direction. Further, kinematics of the abrasive grit path during the traditional grinding and ultrasonic vibration-assisted dry grinding is presented schematically. In this research, the impacts of ultrasonic vibration amplitude as well as the depth of cut on the process yields such as ground surface topography, grinding force, specific grinding energy, force ratio, surface finish, microstructure, and hardness were investigated experimentally. Experimental results revealed that the highest decline in tangential and normal grinding forces in ultrasonic vibration-assisted dry grinding at ultrasonic vibration amplitude 10 µm and the reduction in surface roughness parameter ( Ra, Rq, and Rz) in ultrasonic vibration-assisted dry grinding was 43.23%, 42.59%, and 33.69%, respectively, in comparison to those in traditional dry grinding and 26.35%, 26.94%, and 27.48%, respectively, in comparison to those in traditional wet grinding. It was observed that ultrasonic vibration-assisted dry grinding is beneficial as the profile produced by ultrasonic vibration-assisted dry grinding has a comparatively flat tip, and profile points are shifted to the bottom of the mean line. This study is expected to assist ultrasonic vibration-assisted dry grinding of hard materials.
In the precision fabrication industries, ultrasonic vibration assisted grinding is widely utilized for the finishing of “difficult-to-cut” materials due to its intermittent cutting mechanism and brittle-to-ductile mode machining. In this study, a 2D finite element model (FEM) of single grit ultrasonic vibration assisted dry grinding (UVADG) and conventional dry grinding (CDG) of AISI D2 steel has been developed, which taken into account the influence of longitudinal ultrasonic vibration on the workpiece with variable downfeed. The effects of ultrasonic vibration and downfeed on the chip formation mechanism, temperature field, grinding force and equivalent stress and strain were evaluated by analytical and simulation methods. The results show that the formation of the grinding chips under UVADG is much shorter and straighter than CDG mode at all respective downfeed. The validation experiment compared the simulated and experimental grinding force in both grinding modes to verify the reliability of the FEM results. The validation results demonstrate that the FEM model can accurately describe the single grit UVADG and CDG grinding. At each downfeed, the CDG mode has generated a larger equivalent plastic strain than the UVADG mode, resulting in a higher thermo-mechanical load on the workpiece. According to the findings, UVADG mode has least plastic damage on the ground surface, which may improve the surface integrity of the ground component.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.