In the precision fabrication industries, ultrasonic vibration assisted grinding is widely utilized for the finishing of “difficult-to-cut” materials due to its intermittent cutting mechanism and brittle-to-ductile mode machining. In this study, a 2D finite element model (FEM) of single grit ultrasonic vibration assisted dry grinding (UVADG) and conventional dry grinding (CDG) of AISI D2 steel has been developed, which taken into account the influence of longitudinal ultrasonic vibration on the workpiece with variable downfeed. The effects of ultrasonic vibration and downfeed on the chip formation mechanism, temperature field, grinding force and equivalent stress and strain were evaluated by analytical and simulation methods. The results show that the formation of the grinding chips under UVADG is much shorter and straighter than CDG mode at all respective downfeed. The validation experiment compared the simulated and experimental grinding force in both grinding modes to verify the reliability of the FEM results. The validation results demonstrate that the FEM model can accurately describe the single grit UVADG and CDG grinding. At each downfeed, the CDG mode has generated a larger equivalent plastic strain than the UVADG mode, resulting in a higher thermo-mechanical load on the workpiece. According to the findings, UVADG mode has least plastic damage on the ground surface, which may improve the surface integrity of the ground component.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.