2General Relativity predicts that a star passing close to a supermassive black hole should exhibit a relativistic redshift. We test this using observations of the Galactic center star S0-2. We combine existing spectroscopic and astrometric measurements from 1995-2017, which cover S0-2's 16-year orbit, with measurements in 2018 March to September which cover three events during its closest approach to the black hole. We detect the combination of special relativistic-and gravitational-redshift, quantified using a redshift parameter, Υ. Our result, Υ = 0.88 ± 0.17, is consistent with General Relativity (Υ = 1) and excludes a Newtonian model (Υ = 0 ) with a statistical significance of 5 σ.General Relativity (GR) has been thoroughly tested in weak gravitational fields in the Solar System (1), with binary pulsars (2) and with measurements of gravitational waves from stellarmass black-hole binaries (3,4). Observations of short-period stars in our Galactic center (GC) (5-8) allow GR to be tested in a different regime (9): the strong field near a supermassive black hole (SMBH) (10,11). The star S0-2 (also known as S2) has a 16 year orbit around Sagittarius A* (Sgr A*), the SMBH at the center of the Milky Way. In 2018 May, it reached its point of closest approach, at a distance of 120 astronomical units (au) with a velocity reaching 2.7% of the speed of light. Within a 6 months interval of that date, the star also passed through its maximum (March) and minimum velocity (September) along the line-of-sight, spanning a range of 6000 km s −1 in radial velocity (RV - Fig. 1). We present observations of all three events and combine them with data from 1995-2017 ( Fig. 2).During 2018, the close proximity of S0-2 to the SMBH causes the relativistic redshift, which is the combination of the transverse Doppler shift from special relativity and the gravitational redshift from GR. This deviation from a Keplerian orbit was predicted to reach 200 km s −1 (Fig. 3) and is detectable with current telescopes. The GRAVITY collaboration (9) previously reported a similar measurement. Our measurements are complementary: i) we present a 3 complete set of independent measurements with 3 additional months of data, doubling the time baseline for the year of closest approach, and including the third turning point (RV minimum) in September 2018, ii) we use three different spectroscopic instruments in 2018, which allows us to probe the presence of instrumental biases, iii) we perform an analysis of the systematic errors that may arise from an experiment spanning over 20 years to test for bias in the result, and iv) we publicly release the stellar measurements and the posterior probability distributions.We use a total of 45 astrometric positional measurements (spanning 24 years) and 115 RVs (18 years) to fit the orbit of S0-2. Of these, 11 are new astrometric measurements of S0-2 from 2016 to 2018 and 28 are new RV measurements from 2017 and 2018 ( Fig 1). Astrometric measurements were obtained at the W. M. Keck Observatory using speckle imaging (a ...
The electromagnetic counterpart to the Galactic center supermassive black hole, Sgr A*, has been observed in the near-infrared for over 20 years and is known to be highly variable. We report new Keck Telescope observations showing that Sgr A* reached much brighter flux levels in 2019 than ever measured at near-infrared wavelengths. In the K band, Sgr A* reached flux levels of ∼ 6 mJy, twice the level of the previously observed peak flux from > 13, 000 measurements over 130 nights with the VLT and Keck Telescopes. We also observe a factor of 75 change in flux over a 2-hour time span with no obvious color changes between 1.6 µm and 2.1 µm. The distribution of flux variations observed this year is also significantly different than the historical distribution. Using the most comprehensive statistical model published, the probability of a single night exhibiting peak flux levels observed this year, given historical Keck observations, is less than 0.3%. The probability to observe the flux levels similar to all 4 nights of data in 2019 is less than 0.05%. This increase in brightness and variability may indicate a period of heightened activity from Sgr A* or a change in its accretion state. It may also indicate that the current model is not sufficient to model Sgr A* at high flux levels and should be updated. Potential physical origins of Sgr A*'s unprecedented brightness may be from changes in the accretion-flow as a result of the star S0-2's closest passage to the black hole in 2018 or from a delayed reaction to the approach of the dusty object G2 in 2014. Additional multi-wavelength observations will be necessary to both monitor Sgr A* for potential state changes and to constrain the physical processes responsible for its current variability.
Stars often reside in binary configurations. The nuclear star cluster surrounding the supermassive black hole (SMBH) in the Galactic Center (GC) is expected to include a binary population. In this dense environment, a binary frequently encounters and interacts with neighboring stars. These interactions vary from small perturbations to violent collisions. In the former case, weak gravitational interactions unbind a soft binary over the evaporation timescale, which depends on the binary properties as well as the density of surrounding objects and velocity dispersion. Similarly, collisions can also unbind a binary, and the collision rate depends on the density. Thus, the detection of a binary with known properties can constrain the density profile in the GC with implications for the number of compact objects, which are otherwise challenging to detect. We estimate the density necessary to unbind a binary within its lifetime for an orbit of arbitrary eccentricity about the SMBH. We find that the eccentricity has a minimal impact on the density constraint. In this proof of concept, we demonstrate that this procedure can probe the density in the GC using hypothetical young and old binaries as examples. Similarly, a known density profile provides constraints on the binary orbital separation. Our results highlight the need to consider multiple dynamical processes in tandem. In certain cases, often closer to the SMBH, the collision timescale rather than the evaporation timescale gives the more stringent density constraint, while other binaries farther from the SMBH provide unreliable density constraints because they migrate inward due to mass segregation.
The star S0-2, which orbits the supermassive black hole (SMBH) in our Galaxy with a period of 16 years, provides the strongest constraint on both the mass of the SMBH and the distance to the Galactic center. S0-2 will soon provide the first measurement of relativistic effects near a SMBH. We report the first limits on the binarity of S0-2 from radial velocity (RV) monitoring, which has implications for both understanding its origin and robustness as a probe of the central gravitational field. With 87 RV measurements, which include 12 new observations that we present, we have the requisite data set to look for RV variations from S0-2′s orbital model. Using a Lomb-Scargle analysis and orbit-fitting for potential binaries, we detect no RV variation beyond S0-2′s orbital motion and do not find any significant periodic signal. The lack of a binary companion does not currently distinguish different formation scenarios for S0-2. The upper limit on the mass of a companion star (M comp ) still allowed by our results has a median upper limit of M comp sini1.6 M e for periods between 1 and 150 days, the longest period to avoid tidal break-up of the binary. We also investigate the impact of the remaining allowed binary system on the measurement of the relativistic redshift at S0-2′s closest approach in 2018. While binary star systems are important to consider for this experiment, we find that plausible binaries for S0-2 will not alter a 5σ detection of the relativistic redshift.
We present an ≈11.5 yr adaptive optics (AO) study of stellar variability and search for eclipsing binaries in the central ∼0.4 pc (∼10″) of the Milky Way nuclear star cluster. We measure the photometry of 563 stars using the Keck II NIRC2 imager (K′-band, λ 0 = 2.124 μm). We achieve a photometric uncertainty floor of Δm K′ ∼0.03 (≈3%), comparable to the highest precision achieved in other AO studies. Approximately half of our sample (50% ± 2%) shows variability: 52%±5% of known early-type young stars and 43%±4% of known late-type giants are variable. These variability fractions are higher than those of other young, massive star populations or late-type giants in globular clusters, and can be largely explained by two factors. First, our experiment time baseline is sensitive to long-term intrinsic stellar variability. Second, the proper motion of stars behind spatial inhomogeneities in the foreground extinction screen can lead to variability. We recover the two known Galactic center eclipsing binary systems: IRS 16SW and S4-258 (E60). We constrain the Galactic center eclipsing binary fraction of known early-type stars to be at least 2.4%±1.7%. We find no evidence of an eclipsing binary among the young S-stars nor among the young stellar disk members. These results are consistent with the local OB eclipsing binary fraction. We identify a new periodic variable, S2-36, with a 39.43 days period. Further observations are necessary to determine the nature of this source.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.