Gas kinematics are an important part of the planet formation process. Turbulence influences planetesimal growth and migration from the scale of sub-micron dust grains through gas-giant planets. Radio observations of resolved molecular line emission can directly measure this non-thermal motion and, taking advantage of the layered chemical structure of disks, different molecular lines can be combined to map the turbulence throughout the vertical extent of a protoplanetary disk. Here we present ALMA observations of three molecules (DCO + (3-2), C 18 O(2-1) and CO(2-1)) from the disk around HD 163296. We are able to place stringent upper limits (v turb <0.06c s , <0.05c s and <0.04c s for CO(2-1), C 18 O(2-1) and DCO + (3-2) respectively), corresponding to α 3×10 −3 , similar to our prior limit derived from CO(3-2). This indicates that there is little turbulence throughout the vertical extent of the disk, contrary to theoretical predictions based on the magneto-rotational instability and gravito-turbulence. In modeling the DCO + emission we also find that it is confined to three concentric rings at 65.7±0.9 au, 149.9 +0.5 −0.7 au and 259±1 au, indicative of a complex chemical environment.
Most stellar evolution models predict that black holes (BHs) should not exist above approximately 50–70 M ⊙, the lower limit of the pair-instability mass gap. However, recent LIGO/Virgo detections indicate the existence of BHs with masses at and above this threshold. We suggest that massive BHs, including intermediate-mass BHs (IMBHs), can form in galactic nuclei through collisions between stellar-mass BHs and the surrounding main-sequence stars. Considering dynamical processes such as collisions, mass segregation, and relaxation, we find that this channel can be quite efficient, forming IMBHs as massive as 104 M ⊙. This upper limit assumes that (1) the BHs accrete a substantial fraction of the stellar mass captured during each collision and (2) that the rate at which new stars are introduced into the region near the SMBH is high enough to offset depletion by stellar disruptions and star–star collisions. We discuss deviations from these key assumptions in the text. Our results suggest that BHs in the pair-instability mass gap and IMBHs may be ubiquitous in galactic centers. This formation channel has implications for observations. Collisions between stars and BHs can produce electromagnetic signatures, for example, from X-ray binaries and tidal disruption events. Additionally, formed through this channel, both BHs in the mass gap and IMBHs can merge with the SMBHs at the center of a galactic nucleus through gravitational waves. These gravitational-wave events are extreme- and intermediate-mass ratio inspirals.
Stars often reside in binary configurations. The nuclear star cluster surrounding the supermassive black hole (SMBH) in the Galactic Center (GC) is expected to include a binary population. In this dense environment, a binary frequently encounters and interacts with neighboring stars. These interactions vary from small perturbations to violent collisions. In the former case, weak gravitational interactions unbind a soft binary over the evaporation timescale, which depends on the binary properties as well as the density of surrounding objects and velocity dispersion. Similarly, collisions can also unbind a binary, and the collision rate depends on the density. Thus, the detection of a binary with known properties can constrain the density profile in the GC with implications for the number of compact objects, which are otherwise challenging to detect. We estimate the density necessary to unbind a binary within its lifetime for an orbit of arbitrary eccentricity about the SMBH. We find that the eccentricity has a minimal impact on the density constraint. In this proof of concept, we demonstrate that this procedure can probe the density in the GC using hypothetical young and old binaries as examples. Similarly, a known density profile provides constraints on the binary orbital separation. Our results highlight the need to consider multiple dynamical processes in tandem. In certain cases, often closer to the SMBH, the collision timescale rather than the evaporation timescale gives the more stringent density constraint, while other binaries farther from the SMBH provide unreliable density constraints because they migrate inward due to mass segregation.
At least 70% of massive OBA-type stars reside in binary or higher-order systems. The dynamical evolution of these systems can lend insight into the origins of extreme phenomena such as X-ray binaries and gravitational wave sources. In one such dynamical process, the Eccentric Kozai-Lidov Mechanism, a third companion star alters the secular evolution of a binary system. For dynamical stability, these triple systems must have a hierarchical configuration. We explore the effects of a distant third companion's gravitational perturbations on a massive binary's orbital configuration before significant stellar evolution has taken place (≤ 10 Myr). We include tidal dissipation and general relativistic precession. With large (38, 000 total) Monte-Carlo realizations of massive hierarchical triples, we characterize imprints of the birth conditions on the final orbital distributions. Specifically, we find that the final eccentricity distribution over the range 0.1 − 0.7 is an excellent indicator of its birth distribution. Furthermore, we find that the period distributions have a similar mapping for wide orbits. Finally, we demonstrate that the observed period distribution for approximately 10 Myr-old massive stars is consistent with EKL evolution.
Gravitational wave (GW) emissions from extreme-mass-ratio inspirals (EMRIs) are promising sources for low-frequency GW detectors. They result from a compact object, such as a stellar-mass black hole (BH), captured by a supermassive BH (SMBH). Several physical processes have been proposed to form EMRIs. In particular, weak two-body interactions over a long timescale (i.e., relaxation processes) have been proposed as a likely mechanism to drive the BH orbit to high eccentricity. Consequently, it is captured by the SMBH and becomes an EMRI. Here we demonstrate that EMRIs are naturally formed in SMBH binaries. Gravitational perturbations from an SMBH companion, known as the eccentric Kozai–Lidov (EKL) mechanism, combined with relaxation processes, yield a significantly more enhanced rate than any of these processes operating alone. Because EKL is sensitive to the orbital configuration, two-body relaxation can alter the orbital parameters, rendering the system in a more EKL-favorable regime. As SMBH binaries are expected to be prevalent in the universe, this process predicts a substantially high EMRI rate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.