BackgroundJARID2 is a non-catalytic member of the polycomb repressive complex 2 (PRC2), which is known to regulate developmental target genes in embryonic stem cells. Here, we provide mechanistic insight into the modulation of Wnt signaling by JARID2 during murine skeletal muscle differentiation.ResultsWe show that JARID2 is expressed in proliferating myoblasts, but downregulated upon muscle differentiation. Unexpectedly, depletion of JARID2 or the catalytic subunit of the PRC2 complex, EZH2, inhibited differentiation, suggesting that JARID2 and the PRC2 complex are required to initiate this process. Expression of the myogenic regulatory factors required to promote differentiation, MYOD and MYOG, was downregulated in the absence of JARID2, even though decreases in the methylation of histone H3 lysine 27 (H3K27me3) were observed on both promoters. We found that activation of the Wnt signaling pathway upregulated MYOD and restored differentiation. Activation of the Wnt pathway in JARID2 depleted cells caused β-catenin to translocate to the nucleus, where it bound to and activated the Myod1 promoter. We show that the Wnt antagonist SFRP1 is highly upregulated in the absence of JARID2 and is a direct target of JARID2 and the PRC2 complex. Ectopic expression of SFRP1 blocked MYOD and late muscle gene expression and inhibited the translocation of β-catenin to the nucleus. Finally, we show that JARID2 and SFRP1 are inversely correlated in melanoma, confirming that the JARID2-mediated repression of SFRP1 extends beyond skeletal muscle and has important implications in many cellular systems, including cancer.ConclusionsWe show that JARID2 and the PRC2 complex regulate muscle differentiation by modulating Wnt signaling through the direct repression of Wnt antagonists.Electronic supplementary materialThe online version of this article (10.1186/s13072-018-0217-x) contains supplementary material, which is available to authorized users.
Skeletal muscle gene expression is governed by the myogenic regulatory family (MRF) which includes MyoD (MYOD1) and myogenin (MYOG). MYOD1 and MYOG are known to regulate an overlapping set of muscle genes, but MYOD1 cannot compensate for the absence of MYOG in vivo. In vitro, late muscle genes have been shown to be bound by both factors, but require MYOG for activation. The molecular basis for this requirement was unclear. We show here that MYOG is required for the recruitment of TBP and RNAPII to muscle gene promoters, indicating that MYOG is essential in assembling the transcription machinery. Genes regulated by MYOD1 and MYOG include genes required for muscle fusion, myomaker and myomerger, and we show that myomaker is fully dependent on activation by MYOG. We also sought to determine the role of MYOD1 in MYOG dependent gene activation and unexpectedly found that MYOG is required to maintain Myod1 expression. However, we also found that exogenous MYOD1 was unable to compensate for the loss of Myog and activate muscle gene expression. Thus, our results show that MYOD1 and MYOG act in a feed forward loop to maintain each other’s expression and also show that it is MYOG, and not MYOD1, that is required to load TBP and activate gene expression on late muscle gene promoters bound by both factors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.