To understand the role of human epidermal growth factor receptor (hEGFR) kinase domain mutations in lung tumorigenesis and response to EGFR-targeted therapies, we generated bitransgenic mice with inducible expression in type II pneumocytes of two common hEGFR mutants seen in human lung cancer. Both bitransgenic lines developed lung adenocarcinoma after sustained hEGFR mutant expression, confirming their oncogenic potential. Maintenance of these lung tumors was dependent on continued expression of the EGFR mutants. Treatment with small molecule inhibitors (erlotinib or HKI-272) as well as prolonged treatment with a humanized anti-hEGFR antibody (cetuximab) led to dramatic tumor regression. These data suggest that persistent EGFR signaling is required for tumor maintenance in human lung adenocarcinomas expressing EGFR mutants.
SUMMARY
Epstein-Barr virus (EBV), an oncogenic herpesvirus that causes human
malignancies, infects and immortalizes primary human B cells in
vitro into indefinitely proliferating lymphoblastoid cell lines,
which represent a model for EBV-induced tumorigenesis. The immortalization
efficiency is very low suggesting that an innate tumor suppressor mechanism is
operative. We identify the DNA damage response (DDR) as a major component of the
underlying tumor suppressor mechanism. EBV-induced DDR activation was not due to
lytic viral replication nor did the DDR marks co-localize with latent episomes.
Rather, a transient period of EBV-induced hyper-proliferation correlated with
DDR activation. Inhibition of the DDR kinases ATM and Chk2 markedly increased
transformation efficiency of primary B cells. Further, the viral latent
oncoproteins EBNA3C was required to attenuate the EBV-induced DNA damage
response We propose that heightened oncogenic activity in early cell divisions
activates a growth-suppressive DDR which is attenuated by viral latency products
to induce cell immortalization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.