SUMMARY Epstein-Barr virus (EBV), an oncogenic herpesvirus that causes human malignancies, infects and immortalizes primary human B cells in vitro into indefinitely proliferating lymphoblastoid cell lines, which represent a model for EBV-induced tumorigenesis. The immortalization efficiency is very low suggesting that an innate tumor suppressor mechanism is operative. We identify the DNA damage response (DDR) as a major component of the underlying tumor suppressor mechanism. EBV-induced DDR activation was not due to lytic viral replication nor did the DDR marks co-localize with latent episomes. Rather, a transient period of EBV-induced hyper-proliferation correlated with DDR activation. Inhibition of the DDR kinases ATM and Chk2 markedly increased transformation efficiency of primary B cells. Further, the viral latent oncoproteins EBNA3C was required to attenuate the EBV-induced DNA damage response We propose that heightened oncogenic activity in early cell divisions activates a growth-suppressive DDR which is attenuated by viral latency products to induce cell immortalization.
The innate immune system responds to infections and tissue damage by activating cytosolic sensory complexes called inflammasomes. Cytosolic DNA is sensed by AIM2-like receptors (ALRs) during bacterial and viral infections and in autoimmune diseases. Subsequently, recruitment of the adaptor protein ASC links ALRs to the activation of caspase-1. A controlled immune response is crucial for maintaining homeostasis, but ALR inflammasome regulation is poorly understood. Here, we identified the PYRIN domain (PYD)-only protein 3 (POP3), which competes with ASC for recruitment to ALRs, as an inhibitor of DNA virus-induced ALR inflammasome activation in vivo. Using a mouse model with macrophage-specific POP3 expression, the data emphasizes the importance of ALR inflammasome regulation in the monocytic/macrophage.
b Epstein-Barr virus (EBV) is an oncogenic human herpesvirus that dramatically reorganizes host gene expression to immortalize primary B cells. In this study, we analyzed EBV-regulated host gene expression changes following primary B-cell infection, both during initial proliferation and through transformation into lymphoblastoid cell lines (LCLs). While most EBV-regulated mRNAs were changed during the transition from resting, uninfected B cells through initial B-cell proliferation, a substantial number of mRNAs changed uniquely from early proliferation through LCL outgrowth. We identified constitutively and dynamically EBV-regulated biological processes, protein classes, and targets of specific transcription factors. Early after infection, genes associated with proliferation, stress responses, and the p53 pathway were highly enriched. However, the transition from early to long-term outgrowth was characterized by genes involved in the inhibition of apoptosis, the actin cytoskeleton, and NF-B activity. It was previously thought that the major viral protein responsible for NF-B activation, latent membrane protein 1 (LMP1), is expressed within 2 days after infection. Our data indicate that while this is true, LCL-level LMP1 expression and NF-B activity are not evident until 3 weeks after primary B-cell infection. Furthermore, heterologous NF-B activation during the first week after infection increased the transformation efficiency, while early NF-B inhibition had no effect on transformation. Rather, inhibition of NF-B was not toxic to EBV-infected cells until LMP1 levels and NF-B activity were high. These data collectively highlight the dynamic nature of EBV-regulated host gene expression and support the notion that early EBV-infected proliferating B cells have a fundamentally distinct growth and survival phenotype from that of LCLs.
The RNA-dependent RNA polymerase of hepatitis C virus (HCV) is necessary for the replication of viral RNA and thus represents an attractive target for drug development. Several structural classes of nonnucleoside inhibitors (NNIs) of HCV RNA polymerase have been described, including a promising series of benzothiadiazine compounds that efficiently block replication of HCV subgenomic replicons in tissue culture. In this work we report the selection of replicons resistant to inhibition by the benzothiadiazine class of NNIs. Four different single mutations were identified in separate clones, and all four map to the RNA polymerase gene, validating the polymerase as the antiviral target of inhibition. The mutations (M414T, C451R, G558R, and H95R) render the HCV replicons resistant to inhibition by benzothiadiazines, though the mutant replicons remain sensitive to inhibition by other nucleoside and NNIs of the HCV RNA polymerase. Additionally, cross-resistance studies and synergistic inhibition of the enzyme by combinations of a benzimidazole and a benzothiadiazine indicate the existence of nonoverlapping binding sites for these two structural classes of inhibitors.Hepatitis C virus (HCV) chronically infects about 3% of the human population, causing a slowly evolving liver disease that leads to cirrhosis, liver failure, and occasionally hepatocellular carcinoma (39). Given the size of the HCV epidemic and the limited efficacy of the present therapy based on alpha interferon (16), the development of new, safer, and more effective drugs is of paramount importance and is presently an area of intensive research. The strategy most widely applied for developing novel anti-HCV therapeutics aims at identifying small molecule inhibitors of viral enzymes. The nonstructural protein 5B RNA-dependent RNA polymerase (NS5B RdRp) is an important target of drug discovery activities largely because it is essential for viral replication and also due to the clinical successes of inhibitors of other viral polymerases. In addition, the extensive structural and biochemical characterization of this enzyme provides the basis for drug design efforts as well as for elucidating the mechanism of action of inhibitors and for rapidly optimizing their potency.The NS5B protein was initially identified as an RdRp based on the presence of the signature GDD (Gly-Asp-Asp) motif characteristic for this class of enzymes (11). Its function was confirmed when an active form of the full-length protein was purified from baculovirus-infected insect cells (5). Subsequently, attempts to improve solubility, stability, and activity lead to the expression of C-terminal-truncated forms lacking the hydrophobic membrane anchor contained within the last 21 amino acids (1,17,25,33,35). In vitro, the enzyme shows little, if any, specificity for the HCV genome and can catalyze the synthesis of RNA by using a variety of homo-or heteropolymeric RNA templates both with and without a primer. In the absence of primer, NS5B can initiate RNA synthesis either by using the 3Ј-termi...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.